Kinetic Theory Notes For Class 11 Chapter 13 Download PDF

Chapter 13 : Kinetic Theory

1. Every gas consists of extremely small particles known as molecules. The molecules of a given gas are all identical but are different from those of another gas.

2. The molecules of a gas are identical spherical, rigid and perfectly elastic point masses.

3. Their molecular size is negligible in comparison to intermolecular distance (10^{-9} m).

4. The speed of gas molecules lies between zero and infinity (very high speed).

5. The distance covered by the molecules between two successive collisions is known as free path and mean of all free path is known as mean free path.

6. The number of collision per unit volume in a gas remains constant.

7. No attractive or repulsive force acts between gas molecules.

8. Gravitational to extremely attraction among the molecules is ineffective due small masses and very high speed of molecules.

Assuming permanent gases to be ideal, through experiments, it was established that gases irrespective of their nature obey the following laws.

At constant temperature the volume (V) of given mass of a gas is inversely proportional to its pressure (p), i.e.,

V ā 1/p ā pV = constant

For a given geas, p_{1}V_{1} = p_{2}V_{2}

Charlesā Law

At constant pressure the volume (V) of a given mass of gas is directly proportional to its

absolute temperature (T), i.e.,

V ā T ā V / T = constant

For a given gas, V_{1}/T_{1} = V_{2}/T_{2}

At constant pressure the volume (V) of a given mass of a gas increases or decreases by 1/273.15 of its volume at 0Ā°C for each 1Ā°C rise or fall in temperature.

Volume of the gas at tĀ°Ce

V_{t} = V_{0} (1 + t/273.15)

where V_{0} is the volume of gas at 0Ā°C.

At constant volume the pressure p of a given mass of gas is directly proportional to its absolute temperature T, i.e. ,

p ā T ā V/T = constant

For a given gas,

p_{1}/T_{1 }= p_{2}/T_{2}

At constant volume (V) the pressure p of a given mass of a gas increases or decreases by 1/273.15 of its pressure at 0Ā°C for each lĀ°C rise or fall in temperature.

Volume of the gas at tĀ°C, p_{t} = p_{0 }(1 + t/273.15)

where P_{0} is the pressure of gas at 0Ā°C.

Avogadro stated that equal volume of all the gases under similar conditions of temperature and pressure contain equal number molecules. This statement is called Avogadroās hypothesis.

(i) Avogadroās number The number of molecules present in 1g mole of a gas is defined as Avogadroās number.

N_{A} = 6.023 X 10^{23} per gram mole

(ii) At STP or NTP (T = 273 K and p = 1 atm 22.4 L of each gas has 6.023 x 10^{23} molecules.

(iii) One mole of any gas at STP occupies 22.4 L of volume.

Gases which obey all gas laws in all conditions of pressure and temperature are called perfect gases.

Equation of perfect gas pV=nRT

where p = pressure, V = volume, T = absolute temperature, R = universal gas constant and n = number of moles of a gas.

Universal gas constant R = 8.31 J mo^{l-}1K^{-1}.

Real gases deviate slightly from ideal gas laws because

ā¢ Real gas molecules attract one another.

ā¢ Real gas molecules occupy a finite volume.

Real or Van der Waalās Gas Equation

(p + a/V^{2}) (V ā b) = RT

where a and b are called van der Waalsā constants.

Pressure due to an ideal gas is given by

p = (1/3).(mn/V). c^{2} = 1/3 Ļ c^{2}

For one mole of an ideal gas

P = (1/3).(M/V).c^{2}

where, m = mass of one molecule, n = number of molecules, V = volume of gas, c = (c_{1}^{2} +c_{2}^{2}+ ā¦ + c_{n}

2) / n allde root mean square (rrns) velocity of the gas molecules and M = molecular weight of the gas. If p is the pressure of the gas and E is the kinetic energy per unit volume is E, then

p = (2/3).E

Kinetic Energy of a Gas

(i) Average kinetic energy of translation per molecule of a gas is given by

E = (3/2) kt

where k = Boltzmannās constant.

(ii) Average kinetic energy of translation per mole of a gas is given by

E = (3/2) Rt

where R = universal gas constant.

(iii) For a given gas kinetic energy

E ā T ā E_{1}/E_{2} = T_{1}/T_{2}

(iv) Root mean square (rms) velocity of the gas molecules is given by

(v) For a given gas c ā āT

(vi) For different gases c ā1/āM

(vii) Boltzmannās constant k = R/N

where R is ideal gas constant and N = Avogadro number.

Value of Boltzmannās constant is 1.38 x 10-28 J/K.

(viii) The average speed of molecules of a gas is given by

(ix) The most probable speed of molecules of a gas is given by

The degree of freedom for a dynamic system is the number of directions in which it can move freely or the number of coordinates required to describe completely the position and configuration of the system.

It is denoted by for N.

Degree of freedom of a system is given by

f or N = 3A ā R

where A = number of particles in the system and R = number of independent relations.

Degree of Freedom

1. For monoatomic gas = 3

2. For diatomic gas = 5

3. For non-linear triatomic gas = 6

4. For linear triatomic gas = 7

Specific heat of a gas

(a) At constant volume, C_{V} = f/2 R

(b) At constant pressure, c_{p} = (f/2 + 1)R

(c) Ratio of specific heats of a gas at constant pressure and at constant volume is given by

Ī³ = 1 + 2/f

Mean Free Path

The average distance travelled by a molecule between two successive collisions is called mean free path (Ī³).

Mean free path is given by

Ī³ = kT / ā2 Ļ Ļ^{2}p

where Ļ = diameter of the molecule, p = pressure of the gas,

T = temperature and k = Botlzmannās constant.

Mean free path

Ī» ā T and Ī» ā 1/p

Brownian Motion

The continuous random motion of the particles of microscopic size suspended in air or any liquid, is called Brownian of microscopic motion.

Brownian suspended motion in both is observed with many liquids and gases.

Brownian motion is due to the unequal bombardment of the suspended Particles by the molecules of the surrounding medium.

Please send your queries to ncerthelp@gmail.com you can aslo visit our facebook page to get quick help. Link of our facebook page is given in sidebar

- Chapter 2 Units and Measurements
- Chapter 3 Motion in a straight
- Chapter 4 Motion in a Plane
- Chapter 5 Laws of Motion
- Chapter 6 Work Energy and Power
- Chapter 7 : System Of Particles And Rotational Motion
- Chapter 8 : Gravitation
- Chapter 9 : Mechanical Properties of Solids
- Chapter 10 : Mechanical Properties Of Fluids
- Chapter 11 : Thermal Properties of Matter
- Chapter 12 : Thermodynamics
- Chapter 13 : Kinetic Theory

- NCERT Solutions for Class 9 Science Maths Hindi English Math
- NCERT Solutions for Class 10 Maths Science English Hindi SST
- Class 11 Maths Ncert Solutions Biology Chemistry English Physics
- Class 12 Maths Ncert Solutions Chemistry Biology Physics pdf

- Class 1 Model Test Papers Download in pdf
- Class 5 Model Test Papers Download in pdf
- Class 6 Model Test Papers Download in pdf
- Class 7 Model Test Papers Download in pdf
- Class 8 Model Test Papers Download in pdf
- Class 9 Model Test Papers Download in pdf
- Class 10 Model Test Papers Download in pdf
- Class 11 Model Test Papers Download in pdf
- Class 12 Model Test Papers Download in pdf

Copyright @ ncerthelp.com A free educational website for CBSE, ICSE and UP board.