straight lines class 11 ncert solutions, straight line equation, equation of straight line, equation of a straight line, equations of straight lines, straight line equations, equation for straight line, equation of a straight line problems, equations of a straight line, equation for a straight line, equation of the straight line, equation of straight lines, equation of a straight line worksheet, general equation of a straight line, finding the equation of a straight line, equation straight line,, ncert solutions, chapter 10,chapter 10ncert solutions, straight lines ncert solutions, ncert solutions for class 11 maths, class 11 maths ncert solutions, ncert solutions for class 11, ncert class 11 maths, class 11 maths, class 11 maths solution, ncert solutions class 11, class 11 maths , ncert
Question 1. Draw a quadrilateral in the Cartesian plane, whose vertices are (– 4, 5), (0, 7),
(5, – 5) and (– 4, –2). Also, find its area.
Question 2. The base of an equilateral triangle with side 2a lies along the y-axis such that the
mid-point of the base is at the origin. Find vertices of the triangle.
Question 3. Find the distance between P (x1, y1) and Q (x2, y2) when :
(i) PQ is parallel to the
y-axis, (ii) PQ is parallel to the x-axis.
Question 4. Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).
Question 5. Find the slope of a line, which passes through the origin, and the mid-point of the
line segment joining the points P (0, – 4) and B (8, 0).
Question 6. Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and
(–1, –1) are the vertices of a right angled triangle.
Question 7. Find the slope of the line, which makes an angle of 30° with the positive direction
of y-axis measured anticlockwise.
Question 8. Find the value of x for which the points (x, – 1), (2,1) and (4, 5) are collinear.
Question 9. Without using distance formula, show that points (– 2, – 1), (4, 0), (3, 3) and (–3, 2)
are the vertices of a parallelogram.
Question 10. Find the angle between the x-axis and the line joining the points (3,–1) and (4,–2).
Question 11. The slope of a line is double of the slope of another line. If tangent of the angle
between them is 3
1
, find the slopes of the lines.
Question 12. A line passes through (x1, y1) and (h, k). If slope of the line is m, show that
k – y1 = m (h – x1).
Question 13. If three points (h, 0), (a, b) and (0, k) lie on a line, show that + = 1
k
b
h
a
.
Question 14. Consider the following population and year graph (Fig 10.10), find the slope of the
line AB and using it, find what will be the population in the year 2010?
In Exercises 1 to 8, find the equation of the line which satisfy the given conditions:
Question 1. Write the equations for the x-and y-axes.
Question 2. Passing through the point (– 4, 3) with slope 2
1
.
Question 3. Passing through (0, 0) with slope m.
Question 4. Passing through (2, 2 3)and inclined with the x-axis at an angle of 75o.
Question 5. Intersecting the x-axis at a distance of 3 units to the left of origin with slope –2.
Question 6. Intersecting the y-axis at a distance of 2 units above the origin and making an
angle of 30o with positive direction of the x-axis.
Question 7. Passing through the points (–1, 1) and (2, – 4).
Question 8. Perpendicular distance from the origin is 5 units and the angle made by the
perpendicular with the positive x-axis is 300.
Question 9. The vertices of Δ PQR are P (2, 1), Q (–2, 3) and R (4, 5). Find equation of the
median through the vertex R.
Question 10. Find the equation of the line passing through (–3, 5) and perpendicular to the line
through the points (2, 5) and (–3, 6).
Question 11. A line perpendicular to the line segment joining the points (1, 0) and (2, 3) divides
it in the ratio 1: n. Find the equation of the line.
Question 12. Find the equation of a line that cuts off equal intercepts on the coordinate axes
and passes through the point (2, 3).
Question 13. Find equation of the line passing through the point (2, 2) and cutting off intercepts
on the axes whose sum is 9.
Question 14. Find equation of the line through the point (0, 2) making an angle
2π
3
with the
positive x-axis. Also, find the equation of line parallel to it and crossing the y-axis
at a distance of 2 units below the origin.
Question 15. The perpendicular from the origin to a line meets it at the point (–2, 9), find the
equation of the line.
Question 16. The length L (in centimetrs) of a copper rod is a linear function of its Celsius
temperature C. In an experiment, if L = 124.942 when C = 20 and L= 125.134
when C = 110, express L in terms of C.
Question 17. The owner of a milk store finds that, he can sell 980 litres of milk each week at
Rs 14/litre and 1220 litres of milk each week at Rs 16/litre. Assuming a linear
relationship between selling price and demand, how many litres could he sell
weekly at Rs 17/litre?
Question 18. P (a, b) is the mid-point of a line segment between axes. Show that equation
of the line is + = 2
b
y
a
x
.
Question 19. Point R (h, k) divides a line segment between the axes in the ratio 1: 2. Find
equation of the line.
Question 20. By using the concept of equation of a line, prove that the three points (3, 0),
(– 2, – 2) and (8, 2) are collinear
Question 1. Reduce the following equations into slope - intercept form and find their slopes
and the y - intercepts.
(i) x + 7y = 0, (ii) 6x + 3y – 5 = 0, (iii) y = 0.
Question 2. Reduce the following equations into intercept form and find their intercepts on
the axes.
(i) 3x + 2y – 12 = 0, (ii) 4x – 3y = 6, (iii) 3y + 2 = 0.
Question 3. Reduce the following equations into normal form. Find their perpendicular distances
from the origin and angle between perpendicular and the positive x-axis.
(i) x – 3y + 8 = 0, (ii) y – 2 = 0, (iii) x – y = 4.
Question 4. Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).
Question 5. Find the points on the x-axis, whose distances from the line 1
3 4
x y + = are 4 units.
Question 6. Find the distance between parallel lines
(i) 15x + 8y – 34 = 0 and 15x + 8y + 31 = 0 (ii) l (x + y) + p = 0 and l (x + y) – r = 0.
Question 7. Find equation of the line parallel to the line 3x − 4y + 2 = 0 and passing through
the point (–2, 3).
Question 8. Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having
x intercept 3.
Question 9. Find angles between the lines 3x + y = 1and x + 3y = 1.
Question 10. The line through the points (h, 3) and (4, 1) intersects the line 7x − 9y −19 = 0.
at right angle. Find the value of h .
Question 11. Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is
A (x –x1) + B (y – y1) = 0.
Question 12. Two lines passing through the point (2, 3) intersects each other at an angle of 60o.
If slope of one line is 2, find equation of the other line.
Question 13. Find the equation of the right bisector of the line segment joining the points (3, 4)
and (–1, 2).
Question 14. Find the coordinates of the foot of perpendicular from the point (–1, 3) to the
line 3x – 4y – 16 = 0.
Question 15. The perpendicular from the origin to the line y = mx + c meets it at the point
(–1, 2). Find the values of m and c.
Question 16. If p and q are the lengths of perpendiculars from the origin to the
lines x cosθ − ysin θ = k cos2θ and x sec θ + y cosec θ = k, respectively, prove
that p2 + 4q2 = k2.
Question 17. In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation
and length of altitude from the vertex A.
Question 18. If p is the length of perpendicular from the origin to the line whose intercepts on
the axes are a and b, then show that .
Question 1. Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is
(a) Parallel to the x-axis,
(b) Parallel to the y-axis,
(c) Passing through the origin.
Question 2. Find the values of θ and p, if the equation x cos θ + y sinθ = p is the normal form
of the line 3 x + y + 2 = 0.
Question 3. Find the equations of the lines, which cut-off intercepts on the axes whose sum
and product are 1 and – 6, respectively.
Question 4. What are the points on the y-axis whose distance from the line 1
3 4
x + y = is
4 units.
Question 5. Find perpendicular distance from the origin of the line joining the points (cosθ, sin θ)
and (cos φ, sin φ).
Question 6. Find the equation of the line parallel to y-axis and drawn through the point of
intersection of the lines x – 7y + 5 = 0 and 3x + y = 0.
Question
7. Find the equation of a line drawn perpendicular to the line 1
4 6
x + y =
through the
point, where it meets the y-axis.
Question 8. Find the area of the triangle formed by the lines y – x = 0, x + y = 0 and x – k = 0.
Question 9. Find the value of p so that the three lines 3x + y – 2 = 0, px + 2 y – 3 = 0 and
2x – y – 3 = 0 may intersect at one point.
Question 10. If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are
concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0
Question 11. Find the equation of the lines through the point (3, 2) which make an angle of 45o
with the line x – 2y = 3.
Question 12. Find the equation of the line passing through the point of intersection of the lines
4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.
Question 13. Show that the equation of the line passing through the origin and making an angle
θ with the line tan θ
1 tanθ
y mx c is y m
x m
+
= + = ±−
.
Question 14. In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?
Question 15. Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line
2x – y = 0.
Question 16. Find the direction in which a straight line must be drawn through the point (–1, 2)
so that its point of intersection with the line x + y = 4 may be at a distance of
3 units from this point.
Question 17. The hypotenuse of a right angled triangle has its ends at the points (1, 3) and
(– 4, 1). Find the equation of the legs (perpendicular sides) of the triangle.
Question 18. Find the image of the point (3, 8) with respect to the line x +3y = 7 assuming the
line to be a plane mirror.
Question 9. If the lines y = 3x +1 and 2y = x + 3 are equally inclined to the line y = mx + 4, find
the value of m.
Question 20. If sum of the perpendicular distances of a variable point P (x, y) from the lines
x + y – 5 = 0 and 3x – 2y +7 = 0 is always 10. Show that P must move on a line.
Question 21. Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0
and 3x + 2y + 6 = 0.
Question 22. A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the
reflected ray passes through the point (5, 3). Find the coordinates of A.
Question 23. Prove that the product of the lengths of the perpendiculars drawn from the
points ( a2 − b2 ,0)and (− a2 − b2 ,0)to the line x cosθ y sin θ 1is b2
a b
+ = .
Question 24. A person standing at the junction (crossing) of two straight paths represented by
the equations 2x – 3y + 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose
equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he
should follow.
Please Wait pdf file is loading (कृपया इंतजार करें pdf file लोड हो रही है)...
Loading speed will depend up on your download speed. Pdf file के लोड होने में लगा समय आपकी डाउनलोड स्पीड पर निर्भर करेगा
Copyright @ ncerthelp.com A free educational website for CBSE, ICSE and UP board.