Solve the following Linear Programming Problems graphically: 1. Maximise Z = 3x + 4y subject to the constraints : x + y 4, x 0, y 0. 2. Minimise Z = 3x + 4 y subject to x + 2y 8, 3x + 2y 12, x 0, y 0. 3. Maximise Z = 5x + 3y subject to 3x + 5y 15, 5x + 2y 10, x 0, y 0. 4. Minimise Z = 3x + 5y such that x + 3y 3, x + y 2, x, y 0. 5. Maximise Z = 3x + 2y subject to x + 2y 10, 3x + y 15, x, y 0. 6. Minimise Z = x + 2y subject to 2x + y 3, x + 2y 6, x, y 0. Show that the minimum of Z occurs at more than two points. 7. Minimise and Maximise Z = 5x + 10 y subject to x + 2y 120, x + y 60, x 2y 0, x, y 0. 8. Minimise and Maximise Z = x + 2y subject to x + 2y 100, 2x y 0, 2x + y 200; x, y 0. 9. Maximise Z = x + 2y, subject to the constraints: x 3, x + y 5, x + 2y
Solve the following Linear Programming Problems graphically:
Question 1:Maximise Z = 3x + 4y subject to the constraints : x + y 4, x 0, y 0.
Question 2:Minimise Z = – 3x + 4 y subject to x + 2y 8, 3x + 2y 12, x 0, y 0.
Question 3:Maximise Z = 5x + 3y subject to 3x + 5y 15, 5x + 2y 10, x 0, y 0.
Question 4:Minimise Z = 3x + 5y such that x + 3y 3, x + y 2, x, y 0.
Question 5:Maximise Z = 3x + 2y subject to x + 2y 10, 3x + y 15, x, y 0.
Question 6:Minimise Z = x + 2y subject to 2x + y 3, x + 2y 6, x, y 0. Show that the minimum of Z occurs at more than two points.
Question 7:Minimise and Maximise Z = 5x + 10 y subject to x + 2y 120, x + y 60, x – 2y 0, x, y 0.
Question 8:Minimise and Maximise Z = x + 2y subject to x + 2y 100, 2x – y 0, 2x + y 200; x, y 0.
Question 9:Maximise Z = – x + 2y, subject to the constraints: x 3, x + y 5, x + 2y 6, y 0.
Question 10:Maximise Z = x + y, subject to x – y –1, –x + y 0, x, y 0.