Using elementary transformations, find the inverse of each of the matrices, if it exists in Exercises 1 to 17 1. 1 1 2 3 2. 2 1 1 1 3. 1 3 2 7 4. 2 3 5 7 5. 2 1 7 4 6. 2 5 1 3 7. 3 1 5 2 8. 4 5 3 4 9. 3 10 2 7 10. 3 1 4 2 11. 2 6 1 2 12. 6 3 2 1 13. 2 3 1 2 14. 2 1 4 2 . 15. 2 3 3 2 2 3 3 2 2 16. 1 3 2 3 0 5 2 5 0 17. 2 0 1 5 1 0 0 1 3 18. Matrices A and B will be inverse of each other only if (A) AB = BA (B) AB = BA = 0 (C) AB = 0, BA = I (D) AB = BA = I
Question 1:1 1 2 3 −
Question 2:2 1 1 1
Question 3:1 3 2 7
Question 4:2 3 5 7
Question 5:2 1 7 4
Question 6:2 5 1 3
Question 7:3 1 5 2
Question 8:4 5 3 4
Question 9:3 10 2 7
Question 10:3 1 4 2 − −
Question 11:2 6 1 2 − −
Question 12:6 3 2 1 − −
Question 13:2 3 1 2 − −
Question 14:2 1 4 2 .
Question 15:2 3 3 2 2 3 3 2 2 − −
Question 16:1 3 2 3 0 5 2 5 0 − − −
Question 17:2 0 1 5 1 0 0 1 3 −
Question 18:Matrices A and B will be inverse of each other only if (A) AB = BA (B) AB = BA = 0 (C) AB = 0, BA = I (D) AB = BA = I