Exercise 5.1

Question 1:

 $(5i)\left(-\frac{3}{5}i\right)$ Express the given complex number in the form a + ib: Answer

$$(5i)\left(\frac{-3}{5}i\right) = -5 \times \frac{3}{5} \times i \times i$$

$$= -3i^{2}$$

$$= -3(-1) \qquad \left[i^{2} = -1\right]$$

$$= 3$$

Question 2:

Express the given complex number in the form a + ib: $i^9 + i^{19}$

Answer

 $i^9 + i^{19} = i^{4 \times 2 + 1} + i^{4 \times 4 + 3}$

 $= \left(i^4\right)^2 \cdot i + \left(i^4\right)^4 \cdot i^3$ $=1\times i+1\times (-i)$ $\left[i^4=1,\ i^3=-i\right]$

=i+(-i)

=0

Question 3:

Express the given complex number in the form a + ib: i^{-39}

Answer

 $i^{-39} = i^{-4 \times 9 - 3} = (i^4)^{-9} \cdot i^{-3}$

 $= (1)^{-9} \cdot i^{-3} \qquad \left[i^4 = 1 \right]$ $=\frac{1}{i^3} = \frac{1}{i} \qquad \left[i^3 = -i\right]$

 $=\frac{-1}{i}\times\frac{i}{i}$ $= \frac{-i}{i^2} = \frac{-i}{-1} = i$ [$i^2 = -1$] www.ncerthelp.com

 $\left| \left(\frac{1}{3} + i \frac{7}{3} \right) + \left(4 + i \frac{1}{3} \right) \right| - \left(-\frac{4}{3} + i \right)$

 $3(7+i7)+i(7+i7)=21+21i+7i+7i^2$

= 2 - 7i

$$= 21 + 28i + 7 \times (-1)$$

$$= 14 + 28i$$
Question 5:

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)

Question 4:

Answer

Express the given complex number in the form a + ib: (1 - i) - (-1 + i6)

Answer
$$(1-i)-(-1+i6)=1-i+1-6i$$

Question 6:

 $\left(\frac{1}{5}+i\frac{2}{5}\right)-\left(4+i\frac{5}{2}\right)$

Express the given complex number in the form a + ib:

Answer
$$\left(\frac{1}{2} + i\frac{2}{2}\right)$$

Answer
$$\begin{pmatrix} 1 & 2 \end{pmatrix}$$

$$\left(\frac{1}{5}+i\frac{2}{5}\right)-\left(4+i\frac{5}{2}\right)$$

$$\left(\frac{1}{5} + i\frac{2}{5}\right)$$

$$\left(\frac{1}{5} + i\frac{2}{5}\right)$$

$$\left(\frac{1}{5}\right)$$

$$\left(\frac{-1}{5}\right)^{+}$$

$$=\frac{1}{5}+\frac{2}{5}i-4-\frac{5}{2}i$$

$$5 \cdot 5 \cdot 5 \cdot 2$$

$$= \left(\frac{1}{5} - 4\right) + i\left(\frac{2}{5} - \frac{5}{2}\right)$$

- $=\frac{-19}{5}+i\left(\frac{-21}{10}\right)$
- $=\frac{-19}{5}-\frac{21}{10}i$

- Question 7:

- Express the given complex number in the form a + ib:
- Answer www.ncerthelp.com

Express the given complex number in the form
$$a + ib$$
: $(1 - i)^4$
Answer

Answer
$$(1-i)^4 = \left\lceil (1-i)^2 \right\rceil^2$$

 $\left[\left(\frac{1}{3}+i\frac{7}{3}\right)+\left(4+i\frac{1}{3}\right)\right]-\left(\frac{-4}{3}+i\right)$

 $=\frac{1}{3}+\frac{7}{3}i+4+\frac{1}{3}i+\frac{4}{3}-i$

 $=\frac{17}{2}+i\frac{5}{2}$

Question 8:

 $=\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right)$

 $= [1^2 + i^2 - 2i]^2$

 $=[1-1-2i]^2$

Express the given complex number in the form a + ib: $\left(\frac{1}{3} + 3i\right)^3$. Answer

$$= -\frac{22}{3} - \frac{107}{27}i$$
Question 11:
Find the multiplicative inverse of the complex number 4 – 3i

 $\left[i^3 = -i\right]$

 $i^2 = -1$

 $\left(-2-\frac{1}{3}i\right)$

 $=-\left[8-\frac{i}{27}+4i-\frac{2}{3}\right]$

 $\left(\frac{1}{3} + 3i\right)^3 = \left(\frac{1}{3}\right)^3 + \left(3i\right)^3 + 3\left(\frac{1}{3}\right)\left(3i\right)\left(\frac{1}{3} + 3i\right)$

 $=\frac{1}{27}+27i^3+3i\left(\frac{1}{3}+3i\right)$

 $=\left(\frac{1}{27}-9\right)+i\left(-27+1\right)$

 $=\frac{-242}{27}-26i$

 $\left(-2-\frac{1}{3}i\right)^{3} = \left(-1\right)^{3} \left(2+\frac{1}{3}i\right)^{3}$

Question 10:

Answer

 $=\frac{1}{27}+27(-i)+i+9i^2$ $\left[i^3=-i\right]$

 $=\frac{1}{27}-27i+i-9$ $\left[i^2=-1\right]$

Express the given complex number in the form a + ib:

 $=-\left|2^{3}+\left(\frac{i}{3}\right)^{3}+3\left(2\right)\left(\frac{i}{3}\right)\left(2+\frac{i}{3}\right)\right|$

 $=-\left[8+\frac{i^3}{27}+2i\left(2+\frac{i}{3}\right)\right]$

 $=-\left[8-\frac{i}{27}+4i+\frac{2i^2}{3}\right]$

 $=-\left[\frac{22}{3}+\frac{107i}{27}\right]$

Then, $\overline{z} = 4 + 3i$ and $|z|^2 = 4^2 + (-3)^2 = 16 + 9 = 25$ Therefore, the multiplicative inverse of 4 - 3i is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{4+3i}{25} = \frac{4}{25} + \frac{3}{25}i$$

Question 12:

Answer

Let z = 4 - 3i

Find the multiplicative inverse of the complex number $\sqrt{5} + 3i$ Answer Let $z = \sqrt{5} + 3i$

Then,
$$\overline{z} = \sqrt{5} - 3i$$
 and $|z|^2 = (\sqrt{5})^2 + 3^2 = 5 + 9 = 14$

Therefore, the multiplicative inverse of $\sqrt{5} + 3i$ is given by $z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{\sqrt{5} - 3i}{14} = \frac{\sqrt{5}}{14} - \frac{3i}{14}$

Find the multiplicative inverse of the complex number -i

Answer

Answer

Let
$$z = -i$$

Then, $\overline{z} = i$ and $|z|^2 = 1^2 = 1$

Therefore, the multiplicative inverse of -i is given by $z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{i}{1} = i$

 $(3+i\sqrt{5})(3-i\sqrt{5})$

 $\left[(a+b)(a-b) = a^2 - b^2 \right]$

 $\begin{bmatrix} i^2 = -1 \end{bmatrix}$

www.ncerthelp.com

Express the following expression in the form of a + ib.

$$(\sqrt{3} + \sqrt{2}i) - (\sqrt{3} - i\sqrt{2})$$
Answer
$$(3 + i\sqrt{5})(3 - i\sqrt{5})$$

$$\frac{\left(3+i\sqrt{5}\right)\left(3-i\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}i\right)-\left(\sqrt{3}-i\sqrt{2}\right)}$$

$$\frac{\left(3+i\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)}$$

$$\frac{\left(\sqrt{3} + \sqrt{2}i\right) - \left(\sqrt{3} - i\sqrt{2}\right)}{\left(\sqrt{3} + \sqrt{2}i\right) - \left(i\sqrt{5}\right)^2}$$

$$= \frac{\left(3\right)^2 - \left(i\sqrt{5}\right)^2}{\sqrt{3} + \sqrt{2}i - \sqrt{3} + \sqrt{2}i}$$

$$=\frac{(3)^2}{\sqrt{3}+\sqrt{2}}$$

$$=\frac{(3)}{\sqrt{3}+\sqrt{3}}$$

$$9-5i^2$$

$$=\frac{(3)}{\sqrt{3}+\sqrt{3}}$$
$$9-5i^2$$

$$= \frac{(3)}{\sqrt{3} + \sqrt{3}}$$
$$= \frac{9 - 5i^2}{2\sqrt{2}i}$$

 $=\frac{9-5(-1)}{2\sqrt{2}i}$

 $=\frac{9+5}{2\sqrt{2}i}\times\frac{i}{i}$

 $=\frac{14i}{2\sqrt{2}i^2}$

 $=\frac{14i}{2\sqrt{2}\left(-1\right)}$

 $=\frac{-7i}{\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}$

 $=\frac{-7\sqrt{2}i}{2}$

Exercise 5.2

Question 1:

Find the modulus and the argument of the complex number $z = -1 - i\sqrt{3}$

Answer

$$z = -1 - i\sqrt{3}$$

On squaring and adding, we obtain

Let $r\cos\theta = -1$ and $r\sin\theta = -\sqrt{3}$

$$(a \rightarrow a)^2$$
 $(a \rightarrow a)^2$ $(a \rightarrow b)^2$ $(a \rightarrow b)^2$

$$(r\cos\theta)^2 + (r\sin\theta)^2 = (-1)^2 + (-\sqrt{3})^2$$

$$\Rightarrow r^2 \left(\cos^2 \theta + \sin^2 \theta\right) = 1 + 3$$

$$\Rightarrow r^2 = 4 \qquad \left[\cos^2 \theta + \sin^2 \theta = 1\right]$$

$$\Rightarrow r = \sqrt{4} = 2$$
 [Conventionally, $r > 0$]

∴ Modulus = 2
∴
$$2\cos\theta = -1$$
 and $2\sin\theta = -\sqrt{3}$

$$\Rightarrow \cos\theta = \frac{-1}{2} \text{ and } \sin\theta = \frac{-\sqrt{3}}{2}$$
 Since both the values of $\sin\theta$ and $\cos\theta$ are negative and $\sin\theta$ and $\cos\theta$ are negative in

Since both the values of
$$\sin\theta$$
 and $\cos\theta$ are negative and $\sin\theta$ and $\cos\theta$ are negative in III quadrant,

Argument =
$$-\left(\pi - \frac{\pi}{3}\right) = \frac{-2\pi}{3}$$

Thus, the modulus and argument of the complex number $^{-1-\sqrt{3}\,\mathrm{i}}$ are 2 and $^{-3}$ respectively.

Question 2:

Find the modulus and the argument of the complex number $z = -\sqrt{3} + i$ Answer

 $z = -\sqrt{3} + i$

Let
$$r \cos \theta = -\sqrt{3}$$
 and $r \sin \theta = 1$

On squaring and adding, we obtain

$$r^2 \cos^2 \theta + r^2 \sin^2 \theta = \left(-\sqrt{3}\right)^2 + 1^2$$

$$\Rightarrow r^2 = 3 + 1 = 4 \qquad \qquad \boxed{c}$$

$$\Rightarrow r^2 = 3 + 1 = 4$$
 [cos² θ + sin² θ = 1]

$$\Rightarrow r = \sqrt{4} = 2$$
 [Conventionally, $r > 0$]

$$⇒ r = \sqrt{4} = 2$$
∴ Modulus = 2

: Modulus = 2
:
$$2\cos\theta = -\sqrt{3}$$
 and $2\sin\theta = 1$

$$\therefore 2\cos\theta = -\sqrt{3} \text{ and } 2\sin\theta = 1$$

$$\Rightarrow \cos \theta = \frac{-\sqrt{3}}{3} \text{ and } \sin \theta = \frac{1}{3}$$

$$\Rightarrow \cos \theta = \frac{-\sqrt{3}}{2}$$
 and $\sin \theta = \frac{1}{2}$

$$\Rightarrow \cos \theta = \frac{-\sqrt{3}}{2} \text{ and } \sin \theta = \frac{1}{2}$$

$$\Rightarrow \cos \theta = \frac{1}{2} \text{ and } \sin \theta = \frac{1}{2}$$
$$\therefore \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

Thus, the modulus and argument of the complex number
$$-\sqrt{3}+i$$
 are 2 and $\frac{5\pi}{6}$ respectively.

Question 3:
Convert the given complex number in polar form:
$$1 - i$$

Let $r \cos \theta = 1$ and $r \sin \theta = -1$

[As θ lies in the II quadrant]

$$-\frac{1}{\sqrt{2}} \text{ and } \sin \theta = \frac{1}{\sqrt{2}}$$

$$\frac{1}{2} = \frac{3\pi}{2} \qquad \text{[As } \theta \text{ lies in the II quadrant]}$$

$$\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}} \text{ and } \sin \theta = \frac{1}{\sqrt{2}}$$

$$\therefore \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \qquad \text{[As } \theta \text{ lies in the II quadrant]}$$

$$\Rightarrow r^2 = 2$$

$$\Rightarrow r = \sqrt{2}$$
 [Conventionally, $r > 0$]

Let
$$r \cos \theta = -1$$
 and $r \sin \theta = 1$
On squaring and adding, we obtain

$$\therefore 1-i=r\cos\theta+i\,r\sin\theta=\sqrt{2}\cos\left(-\frac{\pi}{4}\right)+i\sqrt{2}\sin\left(-\frac{\pi}{4}\right)=\sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right)+i\sin\left(-\frac{\pi}{4}\right)\right]_{\text{This is}}$$
 the required polar form.
 Question 4: Convert the given complex number in polar form: $-1+i$ Answer $-1+i$ Let $r\cos\theta=-1$ and $r\sin\theta=1$

[Conventionally, r > 0]

[As θ lies in the IV quadrant]

 $r^2 \cos^2 \theta + r^2 \sin^2 \theta = 1^2 + (-1)^2$

 $\therefore \sqrt{2} \cos \theta = 1$ and $\sqrt{2} \sin \theta = -1$

 $\Rightarrow \cos \theta = \frac{1}{\sqrt{2}}$ and $\sin \theta = -\frac{1}{\sqrt{2}}$

 $\Rightarrow r^2(\cos^2\theta + \sin^2\theta) = 1 + 1$

 $\Rightarrow r^2 = 2$ $\Rightarrow r = \sqrt{2}$

 $\therefore \theta = -\frac{\pi}{4}$

Let
$$r \cos \theta = -1$$
 and $r \sin \theta = 1$
On squaring and adding, we obtain
$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + 1^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$\Rightarrow r^{2} = 2$$

$$\Rightarrow r = \sqrt{2}$$
[Conventionally, $r > 0$]
$$\therefore \sqrt{2} \cos \theta = -1 \text{ and } \sqrt{2} \sin \theta = 1$$

$$= \frac{3\pi}{4}$$
 [As θ lies in the II quadrant]

Question 5:

This is the required polar form.

Convert the given complex number in polar form:
$$-1 - i$$

$$-1-i$$

Let $r\cos\theta=-1$ and $r\sin\theta=-1$

 $\therefore -1 + i = r\cos\theta + ir\sin\theta = \sqrt{2}\cos\frac{3\pi}{4} + i\sqrt{2}\sin\frac{3\pi}{4} = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$

On squaring and adding, we obtain
$$r^2 \cos^2 \theta + r^2 \sin^2 \theta = (-1)^2 + (-1)^2$$

$$r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta = (-1)^{2} + (-1)^{2}$$
$$\Rightarrow r^{2}(\cos^{2}\theta + \sin^{2}\theta) = 1 + 1$$

$$\Rightarrow r^2 = 2$$

$$\Rightarrow r = \sqrt{2}$$
 [Conventionally, $r > 0$]

$$\therefore \sqrt{2} \cos \theta = -1 \text{ and } \sqrt{2} \sin \theta = -1$$

$$\sqrt{2}\cos\theta = -1 \text{ and } \sqrt{2}\sin\theta = -1$$

$$\sqrt{2}\cos\theta = -1$$
 and $\sqrt{2}\sin\theta = -1$
 $\cos\theta = -\frac{1}{\sqrt{2}}$ and $\sin\theta = -\frac{1}{\sqrt{2}}$

$$\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}}$$
 and $\sin \theta = -\frac{1}{\sqrt{2}}$

$$\cos \theta = -\frac{1}{\sqrt{2}}$$
 and $\sin \theta = -\frac{1}{\sqrt{2}}$

$$\cos \theta = -\frac{1}{\sqrt{2}} \text{ and } \sin \theta = -\frac{1}{\sqrt{2}}$$

$$\cos \theta = -\frac{1}{\sqrt{2}} \text{ and } \sin \theta = -\frac{1}{\sqrt{2}}$$

required polar form.

Answer

$$\cos \theta = -\frac{1}{\sqrt{2}}$$
 and $\sin \theta = -\frac{1}{\sqrt{2}}$

$$\cos \theta = -\frac{1}{\sqrt{2}}$$
 and $\sin \theta = -\frac{1}{\sqrt{2}}$

$$\frac{\sqrt{2}}{\pi - \frac{\pi}{2}} = -\frac{3\pi}{4}$$
 [As θ lies in

$$\begin{vmatrix} -\frac{3\pi}{4} & \sqrt{2} \\ -\frac{3\pi}{4} & \text{[As } \theta \text{ lies in the sum of } 0 \end{vmatrix}$$

$$\sqrt{2} = -\frac{3\pi}{4}$$
 [As θ lies in

$$\therefore \theta = -\left(\pi - \frac{\pi}{4}\right) = -\frac{3\pi}{4}$$
 [As θ lies in the III quadrant]

$$-\frac{3\pi}{4} \qquad [As \ \theta \ lies in the III quadrant]$$

$$\frac{-3\kappa}{4} \qquad [As \ \theta \ lies in the III quadrant]$$

$$\therefore -1 - i = r \cos \theta + i r \sin \theta = \sqrt{2} \cos \frac{-3\pi}{4} + i \sqrt{2} \sin \frac{-3\pi}{4} = \sqrt{2} \left(\cos \frac{-3\pi}{4} + i \sin \frac{-3\pi}{4} \right)$$

Convert the given complex number in polar form: -3

$$-3$$

Let $r \cos \theta = -3$ and $r \sin \theta = 0$

Question 7: Convert the given complex number in polar form: $\sqrt{3}+i$ Answer $\sqrt{3}+i$ Let $r\cos\theta=\sqrt{3}$ and $r\sin\theta=1$

 $r^2 \cos^2 \theta + r^2 \sin^2 \theta = (-3)^2$

 $\Rightarrow r^2(\cos^2\theta + \sin^2\theta) = 9$

 $\therefore 3\cos\theta = -3 \text{ and } 3\sin\theta = 0$ $\Rightarrow \cos\theta = -1 \text{ and } \sin\theta = 0$

This is the required polar form.

On squaring and adding, we obtain

 $r^2 \cos^2 \theta + r^2 \sin^2 \theta = (\sqrt{3})^2 + 1^2$

 $\Rightarrow r^2(\cos^2\theta + \sin^2\theta) = 3 + 1$

 $\Rightarrow r^2 = 4$

 $\Rightarrow r = \sqrt{9} = 3$ [Conventionally, r > 0]

 $\therefore -3 = r\cos\theta + ir\sin\theta = 3\cos\pi + \beta\sin\pi = 3(\cos\pi + i\sin\pi)$

 $\Rightarrow r^2 = 9$

 $\therefore \theta = \pi$

⇒
$$r = \sqrt{4} = 2$$
 [Conventionally, $r > 0$]
∴ $2\cos\theta = \sqrt{3}$ and $2\sin\theta = 1$
⇒ $\cos\theta = \frac{\sqrt{3}}{2}$ and $\sin\theta = \frac{1}{2}$
∴ $\theta = \frac{\pi}{6}$ [As θ lies in the I quadrant]
∴ $\sqrt{3} + i = r\cos\theta + ir\sin\theta = 2\cos\frac{\pi}{6} + i2\sin\frac{\pi}{6} = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
www.ncerthelp.com

This is the required polar form.

Question 8:

Convert the given complex number in polar form: i

Answer

Let
$$r \cos \theta = 0$$
 and $r \sin \theta = 1$

On squaring and adding, we obtain

$$r^2\cos^2\theta + r^2\sin^2\theta = 0^2 + 1^2$$

$$\Rightarrow r^2 \left(\cos^2 \theta + \sin^2 \theta\right) = 1$$

$$\Rightarrow r^2 = 1$$

$$\Rightarrow r = \sqrt{1} = 1$$
 [Conventionally, $r > 0$]

$$\therefore \cos \theta = 0 \text{ and } \sin \theta = 1$$

$$\pi$$

$$=\frac{\pi}{}$$

$$\therefore \theta = \frac{\pi}{2}$$

$$\therefore i = r\cos\theta + ir\sin\theta = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

This is the required polar form.

Exercise 5.3

Question 1:

Solve the equation $x^2 + 3 = 0$

Answer

The given quadratic equation is $x^2 + 3 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

a = 1, b = 0, and c = 3

Therefore, the discriminant of the given equation is $D = b^2 - 4ac = 0^2 - 4 \times 1 \times 3 = -12$

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{\pm \sqrt{-12}}{2 \times 1} = \frac{\pm \sqrt{12} i}{2} \qquad \left[\sqrt{-1} = i\right]$$

$$2 \times 1 \qquad 2$$

$$= \frac{\pm 2\sqrt{3} i}{2} = \pm \sqrt{3} i$$

Question 2:

Solve the equation $2x^2 + x + 1 = 0$

Answer The given quadratic equation is $2x^2 + x + 1 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

a = 2, b = 1, and c = 1Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = 1^2 - 4 \times 2 \times 1 = 1 - 8 = -7$$
Therefore, the required solutions when near the lp.com

On comparing the given equation with
$$ax^2 + bx + c = 0$$
, we obtain $a = -1$, $b = 1$, and $c = -2$

 $\left[\sqrt{-1} = i \right]$

Answer The given quadratic equation is $-x^2 + x - 2 = 0$

Solve the equation
$$-x^2 + x - 2 = 0$$

Answer
The given quadratic equation is $-x^2 + x - 2 = 0$
On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

 $\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-27}}{2(1)} = \frac{-3 \pm 3\sqrt{-3}}{2} = \frac{-3 \pm 3\sqrt{3}i}{2}$ $\sqrt{-1} = i$ Question 4:

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

 $\left[\sqrt{-1} = i \right]$

Therefore, the discriminant of the given equation is
$$D = b^2 - 4ac = 1^2 - 4 \times (-1) \times (-2) = 1 - 8 = -7$$
Therefore, the required solutions are

 $\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times 2} = \frac{-1 \pm \sqrt{7} i}{4}$

Solve the equation $x^2 + 3x + 9 = 0$

a = 1, b = 3, and c = 9

The given quadratic equation is $x^2 + 3x + 9 = 0$

Therefore, the discriminant of the given equation is

 $D = b^2 - 4ac = 3^2 - 4 \times 1 \times 9 = 9 - 36 = -27$

Therefore, the required solutions are

Question 3:

Answer

 $\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times (-1)} = \frac{-1 \pm \sqrt{7} i}{-2}$

Solve the equation $x^2 + 3x + 5 = 0$

Answer

The given quadratic equation is $x^2 + 3x + 5 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, we obtain www.ncerthelp.com

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = 3^2 - 4 \times 1 \times 5 = 9 - 20 = -11$$
Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{-b \pm \sqrt{D}} = \frac{-3 \pm \sqrt{-11}}{-3 \pm \sqrt{11}i} = \frac{-3 \pm \sqrt{11}i}{-3 \pm \sqrt{11}i}$$

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-11}}{2 \times 1} = \frac{-3 \pm \sqrt{11}i}{2} \qquad \left[\sqrt{-1} = i\right]$$

Solve the equation $x^2 - x + 2 = 0$

Therefore, the required solutions are

Solve the equation $\sqrt{2}x^2 + x + \sqrt{2} = 0$

 $a = \sqrt{2}$, b = 1, and $c = \sqrt{2}$

a = 1, b = -1, and c = 2

a = 1, b = 3, and c = 5

Question 6:

Question 7:

Answer

Answer

$$\frac{-b \pm \sqrt{D}}{2} = \frac{-3 \pm \sqrt{-11}}{2} = \frac{-3 \pm \sqrt{11}i}{2}$$

herefore, the required solutions are
$$-b \pm \sqrt{D} = -3 \pm \sqrt{-11} = -3 \pm \sqrt{11}i$$

Therefore, the required solutions are
$$-b + \sqrt{D} = -3 + \sqrt{-11} = -3 + \sqrt{11}i$$

re, the required solutions are
$$3 \pm \sqrt{-11}$$
 $-3 \pm \sqrt{11}i$

The given quadratic equation is $x^2 - x + 2 = 0$

Therefore, the discriminant of the given equation is $D = b^2 - 4ac = (-1)^2 - 4 \times 1 \times 2 = 1 - 8 = -7$

 $\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1) \pm \sqrt{-7}}{2 \times 1} = \frac{1 \pm \sqrt{7} i}{2} \qquad \left[\sqrt{-1} = i\right]$

The given quadratic equation is $\sqrt{2}x^2 + x + \sqrt{2} = 0$

Therefore, the discriminant of the given equation is

 $D = b^2 - 4ac = 1^2 - 4 \times \sqrt{2} \times \sqrt{2} = 1 - 8 = -7$

 $\frac{-b \pm \sqrt{D}}{2\pi} = \frac{-1 \pm \sqrt{-7}}{2\pi \sqrt{2}} = \frac{-1 \pm \sqrt{7} i}{2\pi \sqrt{2}}$

Therefore, the required solutions are

ne required solutions are
$$-3 \pm \sqrt{-11}$$
 $-3 \pm \sqrt{11}i$

d solutions are
$$-3 \pm \sqrt{11}i$$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

 $\left[\sqrt{-1} = i \right]$

red solutions are
$$11 - 3 \pm \sqrt{11}i$$

$$= \frac{-3 \pm \sqrt{11}i}{}$$

Sutions are
$$5 \pm \sqrt{11}i$$

Question 8:

Solve the equation
$$\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$$

Answer

The given quadratic equation is $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a=\sqrt{3}$$
 , $b=-\sqrt{2}$, and $c=3\sqrt{3}$
Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = \left(-\sqrt{2}\right)^2 - 4\left(\sqrt{3}\right)\left(3\sqrt{3}\right) = 2 - 36 = -34$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-\left(-\sqrt{2}\right) \pm \sqrt{-34}}{2 \times \sqrt{3}} = \frac{\sqrt{2} \pm \sqrt{34}i}{2\sqrt{3}} \qquad \left[\sqrt{-1} = i\right]$$

$$x^2 + x + \frac{1}{\sqrt{2}} = 0$$

Solve the equation

The given quadratic equation is

This equation can also be written as
$$\sqrt{2}x^2 + \sqrt{2}x + 1 = 0$$

 $x^2 + x + \frac{1}{\sqrt{2}} = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain

$$a = \sqrt{2}$$
, $b = \sqrt{2}$, and $c = 1$

$$\therefore \text{ Discrimin ant } (D) = b^2 - 4ac = \left(\sqrt{2}\right)^2 - 4 \times \left(\sqrt{2}\right) \times 1 = 2 - 4\sqrt{2}$$

Therefore, the required solutions are

Question 10:

Answer
$$x^2 + \frac{x}{\sqrt{2}} + 1 = 0$$
 The given quadratic equation is

 $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$

 $\frac{-\mathbf{b} \pm \sqrt{\mathbf{D}}}{2\mathbf{a}} = \frac{-\sqrt{2} \pm \sqrt{2 - 4\sqrt{2}}}{2 \times \sqrt{2}} = \frac{-\sqrt{2} \pm \sqrt{2\left(1 - 2\sqrt{2}\right)}}{2\sqrt{2}}$

 $=\frac{-1\pm\left(\sqrt{2\sqrt{2}-1}\right)i}{2}$

 $= \left[\frac{-\sqrt{2} \pm \sqrt{2} \left(\sqrt{2\sqrt{2} - 1}\right)i}{2\sqrt{2}} \right] \left[\sqrt{-1} = i \right]$

This equation can also be written as $\sqrt{2}x^2 + x + \sqrt{2} = 0$ On comparing this equation with $ax^2 + bx + c = 0$, we obtain

$$a = \sqrt{2}$$
, $b = 1$, and $c = \sqrt{2}$
∴ Discriminant (D) = $b^2 - 4ac = 1^2 - 4 \times \sqrt{2} \times \sqrt{2} = 1 - 8 = -7$

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2\sqrt{2}} = \frac{-1 \pm \sqrt{7} i}{2\sqrt{2}}$$

$$\left[\sqrt{-1} = i\right]$$

Therefore, the required solutions are

NCERT Miscellaneous Solutions

Question 1:

Evaluate:
$$\left[i^{18} + \left(\frac{1}{i}\right)^{25}\right]^3$$

Answer

$$=2-2i$$

 $\left[i^{18} + \left(\frac{1}{i}\right)^{25}\right]^3$

 $=\left[i^2+\frac{1}{i}\right]^3$

 $=\left[-1+\frac{1}{i}\times\frac{i}{i}\right]^3$

 $=\left[-1+\frac{i}{i^2}\right]^3$

 $= [-1-i]^3$

 $=(-1)^3[1+i]^3$

 $= -\left[1^3 + i^3 + 3 \cdot 1 \cdot i \left(1 + i\right)\right]$

 $=-[1+i^3+3i+3i^2]$

=-[1-i+3i-3]

=-[-2+2i]

 $= \left[i^{4\times 4+2} + \frac{1}{i^{4\times 6+1}}\right]^3$

 $= \left[\left(i^4 \right)^4 \cdot i^2 + \frac{1}{\left(i^4 \right)^6 \cdot i} \right]^3$

Question 2: For any two complex numbers z_1 and z_2 , prove that

Re (z_1z_2) = Re z_1 Re z_2 - Im z_1 Im z_2

 $\left[i^4 = 1\right]$

 $\begin{bmatrix} i^2 = -1 \end{bmatrix}$

Answer

http://www.ncerthelp.con

$$=\frac{307+599i}{2(221)}=\frac{307+599i}{442}=\frac{307}{442}+\frac{599i}{442}$$

 $i^2 = -1$

 $=\frac{462+165i+434i+155i^2}{2\left\lceil \left(14\right)^2-\left(5i\right)^2\right\rceil}=\frac{307+599i}{2\left(196-25i^2\right)}$

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$

 $= x_1(x_2 + iy_2) + iy_1(x_2 + iy_2)$

 $= x_1x_2 + ix_1y_2 + iy_1x_2 + i^2y_1y_2$

 $= x_1 x_2 + i x_1 y_2 + i y_1 x_2 - y_1 y_2$

 $\Rightarrow \operatorname{Re}(z_1 z_2) = \operatorname{Re} z_1 \operatorname{Re} z_2 - \operatorname{Im} z_1 \operatorname{Im} z_2$

 $=(x_1x_2-y_1y_2)+i(x_1y_2+y_1x_2)$

Reduce $\left(\frac{1}{1-4i} - \frac{2}{1+i}\right) \left(\frac{3-4i}{5+i}\right)$ to the standard form.

 $\left(\frac{1}{1-4i}-\frac{2}{1+i}\right)\left(\frac{3-4i}{5+i}\right) = \left|\frac{(1+i)-2(1-4i)}{(1-4i)(1+i)}\right|\left[\frac{3-4i}{5+i}\right]$

 $= \left[\frac{1+i-2+8i}{1+i-4i-4i^2} \right] \left[\frac{3-4i}{5+i} \right] = \left[\frac{-1+9i}{5-3i} \right] \left[\frac{3-4i}{5+i} \right]$

 $= \left[\frac{-3+4i+27i-36i^2}{25+5i-15i-3i^2} \right] = \frac{33+31i}{28-10i} = \frac{33+31i}{2(14-5i)}$

 $\therefore z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2)$

 $\Rightarrow \operatorname{Re}(z_1 z_2) = x_1 x_2 - y_1 y_2$

 $= \frac{(33+31i)}{2(14-5i)} \times \frac{(14+5i)}{(14+5i)}$

Hence, proved.

Question 3:

Answer

This is the required standard form.

$$\frac{307 + 599i}{442} = \frac{307}{442} + \frac{599i}{442}$$
 equired standard form.

 $\text{If } x-iy=\sqrt{\frac{a-ib}{c-id}} \text{ prove that } \left(x^2+y^2\right)^2=\frac{a^2+b^2}{c^2+d^2}\,.$

Answer

Question 4:

$$x - iy = \sqrt{\frac{a - ib}{c - id}}$$

$$= \sqrt{\frac{a - ib}{c - id}} \times \frac{c + id}{c + id} \left[\text{On multiplying numerator and denominator by } (c + id) \right]$$

$$= \sqrt{\frac{(ac + bd) + i(ad - bc)}{c^2 + d^2}}$$

$$\therefore (x - iy)^2 = \frac{(ac + bd) + i(ad - bc)}{c^2 + d^2}$$

$$\Rightarrow x^2 - y^2 - 2ixy = \frac{(ac + bd) + i(ad - bc)}{c^2 + d^2}$$

On comparing real and imaginary parts, we obtain

$$x^{2} - y^{2} = \frac{ac + bd}{c^{2} + d^{2}}, -2xy = \frac{ad - bc}{c^{2} + d^{2}}$$
 (1)

(i)
$$\frac{1+7i}{(2-i)^2}$$
, (ii) $\frac{1+3i}{1-2i}$

Answer

$$z = \frac{1+7i}{(2-i)^2}$$
(i) Here,
$$z = \frac{1+7i}{(2-i)^2}$$

$$= \frac{1+7i}{(2-i)^2} = \frac{1+7i}{4+i^2-4i} = \frac{1+7i}{4-1-4i}$$

Using (1)

 $(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2$

 $=\frac{a^{2}c^{2}+b^{2}d^{2}+2acbd+a^{2}d^{2}+b^{2}c^{2}-2adbc}{\left(c^{2}+d^{2}\right)^{2}}$

Convert the following in the polar form:

 $= \left(\frac{ac + bd}{c^2 + d^2}\right)^2 + \left(\frac{ad - bc}{c^2 + d^2}\right)^2$

 $=\frac{a^{2}c^{2}+b^{2}d^{2}+a^{2}d^{2}+b^{2}c^{2}}{\left(c^{2}+d^{2}\right)^{2}}$

 $= \frac{a^{2} \left(c^{2} + d^{2}\right) + b^{2} \left(c^{2} + d^{2}\right)}{\left(c^{2} + d^{2}\right)^{2}}$

 $= \frac{\left(c^{2} + d^{2}\right)\left(a^{2} + b^{2}\right)}{\left(c^{2} + d^{2}\right)^{2}}$

 $=\frac{a^2+b^2}{a^2+d^2}$

Hence, proved.

Question 5:

= -1 + i

 $=\frac{1+7i}{3-4i}\times\frac{3+4i}{3+4i}=\frac{3+4i+21i+28i^2}{3^2+4^2}$ $=\frac{3+4i+21i-28}{3^2+4^2}=\frac{-25+25i}{25}$ Let $r \cos \theta = -1$ and $r \sin \theta = 1$

 $=\frac{1+2i+3i-6}{1+4}$ $=\frac{-5+5i}{5}=-1+i$

[As θ lies in II quadrant]

 $[\cos^2 \theta + \sin^2 \theta = 1]$

[Conventionally, r > 0]

 $\Rightarrow \cos \theta = \frac{-1}{\sqrt{2}}$ and $\sin \theta = \frac{1}{\sqrt{2}}$ $\therefore \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$

 $\therefore \sqrt{2} \cos \theta = -1 \text{ and } \sqrt{2} \sin \theta = 1$

On squaring and adding, we obtain

 $r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$ $\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 2$

 $\Rightarrow r^2 = 2$

 $\Rightarrow r = \sqrt{2}$

 $=\sqrt{2}\cos\frac{3\pi}{4} + i\sqrt{2}\sin\frac{3\pi}{4} = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ This is the required polar form.

 $z = r \cos \theta + i r \sin \theta$

Let $r \cos \theta = -1$ and $r \sin \theta = 1$

 $r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$ $\Rightarrow r^2 (\cos^2 \theta + \sin^2 \theta) = 2$

On squaring and adding, we obtain

(ii) Here, $z = \frac{1+3i}{1-2i}$

 $=\frac{1+3i}{1-2i}\times\frac{1+2i}{1+2i}$

 $\Rightarrow r^2 = 2$

 $[\cos^2 \theta + \sin^2 \theta = 1]$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain a = 9, b = -12, and c = 20

The given quadratic equation is This equation can also be written as $9x^2 - 12x + 20 = 0$

Therefore, the discriminant of the given equation is

Therefore, the required solutions are

Question 7:

 $D = b^2 - 4ac = (-12)^2 - 4 \times 9 \times 20 = 144 - 720 = -576$

Solve the equation Answer $3x^2 - 4x + \frac{20}{3} = 0$

 $3x^2 - 4x + \frac{20}{3} = 0$

 $= \sqrt{2}\cos\frac{3\pi}{4} + i\sqrt{2}\sin\frac{3\pi}{4} = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ This is the required polar form.

[Conventionally, r > 0]

[As θ lies in II quadrant]

 $\Rightarrow r = \sqrt{2}$

 $\therefore \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$

 $\therefore z = r \cos \theta + i r \sin \theta$

 $\therefore \sqrt{2} \cos \theta = -1 \text{ and } \sqrt{2} \sin \theta = 1$

 $\Rightarrow \cos \theta = \frac{-1}{\sqrt{2}}$ and $\sin \theta = \frac{1}{\sqrt{2}}$

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-12) \pm \sqrt{-576}}{2 \times 9} = \frac{12 \pm \sqrt{576} \, i}{18}$$

$$= \frac{12 \pm 24i}{18} = \frac{6(2 \pm 4i)}{18} = \frac{2 \pm 4i}{3} = \frac{2}{3} \pm \frac{4}{3}i$$

 $\left[\sqrt{-1} = i \right]$

 $x^2 - 2x + \frac{3}{2} = 0$ Solve the equation

The given quadratic equation is

Therefore, the discriminant of the given equation is $D = b^2 - 4ac = (-4)^2 - 4 \times 2 \times 3 = 16 - 24 = -8$

 $\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-4) \pm \sqrt{-8}}{2 \times 2} = \frac{4 \pm 2\sqrt{2} i}{4} \qquad \left[\sqrt{-1} = i\right]$

This equation can also be written as $2x^2 - 4x + 3 = 0$

$$x^2 - 1$$

$$x^2 - 2x + \frac{3}{2} = 0$$

is
$$x^2 - 2$$

$$x^2 -$$

$$x^2 - 1$$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain

Therefore, the discriminant of the given equation is

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

The given quadratic equation is $27x^2 - 10x + 1 = 0$

 $D = b^2 - 4ac = (-10)^2 - 4 \times 27 \times 1 = 100 - 108 = -8$

a = 27, b = -10, and c = 1

 $=\frac{5\pm\sqrt{2}i}{27}=\frac{5}{27}\pm\frac{\sqrt{2}}{27}i$

Solve the equation $27x^2 - 10x + 1 = 0$

a = 2, b = -4, and c = 3

 $=\frac{2\pm\sqrt{2}i}{2}=1\pm\frac{\sqrt{2}}{2}i$

Question 8:

Answer

Therefore, the required solutions are

Therefore, the required solutions are $\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-10) \pm \sqrt{-8}}{2 \times 27} = \frac{10 \pm 2\sqrt{2} i}{54}$

the given equation is
$$7 \times 1 = 100 - 108 = -8$$

is
$$3 = -8$$

$$\left[\sqrt{-1} = i \right]$$

Question 9:

Solve the equation $21x^2 - 28x + 10 = 0$ Answer

The given quadratic equation is $21x^2 - 28x + 10 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

Therefore, the required solutions are

 $D = b^2 - 4ac = (-28)^2 - 4 \times 21 \times 10 = 784 - 840 = -56$

 $\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-28) \pm \sqrt{-56}}{2 \times 21} = \frac{28 \pm \sqrt{56} i}{42}$

$$\frac{-28 \pm 2\sqrt{14}i}{2a} = \frac{(28)\pm \sqrt{36}i}{2 \times 21} = \frac{28 \pm \sqrt{36}i}{42}$$
$$= \frac{28 \pm 2\sqrt{14}i}{42} = \frac{28}{42} \pm \frac{2\sqrt{14}}{42}i = \frac{2}{3} \pm \frac{\sqrt{14}}{21}i$$

Therefore, the discriminant of the given equation is

Question 10:

$$z_1 = 2 - i, z_2 =$$

If
$$z_1 = 2 - i$$
, $z_2 = 1 + i$, find $\left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|$.

a = 21, b = -28, and c = 10

Answer $z_1 = 2 - i$, $z_2 = 1 + i$

Thus, the value of $\left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right|$ is $\sqrt{2}$.

 $= \left| \frac{2(1+i)}{1+1} \right| \qquad \left[i^2 = -1 \right]$

$$= \left| \frac{2}{1-i} \times \frac{1+i}{1+i} \right| = \left| \frac{2(1+i)}{1^2 - i^2} \right|$$

 $=\left|\frac{2(1+i)}{2}\right|$ $= |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}$

Question 11:

 $\left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right| = \left| \frac{(2 - i) + (1 + i) + 1}{(2 - i) - (1 + i) + 1} \right|$

 $= \left| \frac{4}{2-2i} \right| = \left| \frac{4}{2(1-i)} \right|$

www.ncerthelp.com

 $\therefore a^2 + b^2 = \frac{(x^2 + 1)^2}{(2x^2 + 1)^2}$ Hence, proved.

Question 12:

If $a + ib = \frac{(x+i)^2}{2x^2+1}$, prove that $a^2 + b^2 = \frac{(x^2+1)^2}{(2x+1)^2}$

On comparing real and imaginary parts, we obtain

Answer

 $a + ib = \frac{(x+i)^2}{2x^2+1}$

 $=\frac{x^2+i^2+2xi}{2x^2+1}$

 $=\frac{x^2-1+i2x}{2x^2+1}$

 $a = \frac{x^2 - 1}{2x^2 + 1}$ and $b = \frac{2x}{2x^2 + 1}$

 $=\frac{x^2-1}{2x^2+1}+i\left(\frac{2x}{2x^2+1}\right)$

 $\therefore a^2 + b^2 = \left(\frac{x^2 - 1}{2x^2 + 1}\right)^2 + \left(\frac{2x}{2x^2 + 1}\right)^2$

 $=\frac{x^4+1-2x^2+4x^2}{(2x+1)^2}$

 $=\frac{x^4+1+2x^2}{(2x^2+1)^2}$

 $=\frac{\left(x^2+1\right)^2}{\left(2x^2+1\right)^2}$

Question 12:
Let
$$z_1 = 2 - i$$
, $z_2 = -2 + i$. Find

$$z_1 = 2-1$$
, $z_2 = -2+1$. Find
www.ncerthelp.com

$$\frac{1}{z_1 \overline{z}_1} = \frac{1}{(2-i)(2+i)} = \frac{1}{(2)^2 + (1)^2} = \frac{1}{5}$$
On comparing imaginary parts, we obtain
$$\operatorname{Im}\left(\frac{1}{z_1 \overline{z}_1}\right) = 0$$

 $\operatorname{Re}\left(\frac{z_1 z_2}{\overline{z}_1}\right) \operatorname{Im}\left(\frac{1}{z_1 \overline{z}_1}\right)$

 $=\frac{-2+11i}{5}=\frac{-2}{5}+\frac{11}{5}i$

On comparing real parts, we obtain

(i) $z_1 z_2 = (2-i)(-2+i) = -4+2i+2i-i^2 = -4+4i-(-1)=-3+4i$

On multiplying numerator and denominator by (2 - i), we obtain

 $\frac{z_1 z_2}{\overline{z}_1} = \frac{(-3+4i)(2-i)}{(2+i)(2-i)} = \frac{-6+3i+8i-4i^2}{2^2+1^2} = \frac{-6+11i-4(-1)}{2^2+1^2}$

Answer

 $\overline{z}_1 = 2 + i$

 $\therefore \frac{z_1 z_2}{\overline{z}} = \frac{-3 + 4i}{2 + i}$

 $\operatorname{Re}\left(\frac{z_1 z_2}{\overline{z}}\right) = \frac{-2}{5}$

Question 13:

Answer

 $z_1 = 2 - i$, $z_2 = -2 + i$

Find the modulus and argument of the complex number 1-3i. $z = \frac{1+2i}{1-3i}$, then

1 + 2i

 $\frac{1}{\sqrt{2}}$ and $\frac{3\pi}{4}$

Let z = (x-iy)(3+5i) $z = 3x + 5xi - 3vi - 5vi^2 = 3x + 5xi - 3vi + 5v = (3x + 5v) + i(5x - 3v)$

Therefore, the modulus and argument of the given complex number are

It is given that, $\overline{z} = -6 - 24i$ www.ncerthelp.com

Let
$$z = (x - iy)(3 + 5i)$$

 $z = 3x + 5xi - 3yi - 5yi^2 = 3x + 5xi - 3yi + 5y = (3x + 5y) + i(5x - 3y)$
 $\therefore \overline{z} = (3x + 5y) - i(5x - 3y)$

$$= (x-iy)(3+5i)$$

$$x+5xi-3yi-5yi^2 = 3x+5xi-3yi+5y = (3x+5y)+i(5x-3y)$$

$$(3x+5y)-i(5x-3y)$$

$$\therefore \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$
 [As θ lies in the II quadrant]

$$\therefore \frac{1}{\sqrt{2}}\cos\theta = \frac{-1}{2} \text{ and } \frac{1}{\sqrt{2}}\sin\theta = \frac{1}{2}$$

$$\Rightarrow \cos\theta = \frac{-1}{\sqrt{2}} \text{ and } \sin\theta = \frac{1}{\sqrt{2}}$$

respectively.

Question 14:

Answer

$$r^{2}\left(\cos^{2}\theta + \sin^{2}\theta\right) = \left(\frac{-1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}$$
$$\Rightarrow r^{2} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

 $=\frac{-5+5i}{10}=\frac{-5}{10}+\frac{5i}{10}=\frac{-1}{2}+\frac{1}{2}i$

i.e., $r \cos \theta = \frac{-1}{2}$ and $r \sin \theta = \frac{1}{2}$

Let $z = r \cos \theta + ir \sin \theta$

On squaring and adding, we obtain
$$r^{2} \left(\cos^{2} \theta + \sin^{2} \theta\right) = \left(\frac{-1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}$$

 $z = \frac{1+2i}{1-3i} \times \frac{1+3i}{1+3i} = \frac{1+3i+2i+6i^2}{1^2+3^2} = \frac{1+5i+6(-1)}{1+9}$

$$r^{2} \left(\cos^{2} \theta + \sin^{2} \theta\right) = \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)$$

$$\Rightarrow r^{2} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$\Rightarrow r = \frac{1}{\sqrt{2}}$$
[Conventionally, $r > 0$]

$$\left[\begin{array}{c} 1 \\ \frac{1}{4} = \frac{1}{2} \end{array}\right]$$
[Conventionally, $r > 0$]

Question 14:
Find the real numbers
$$x$$
 and y if $(x - iy)$ $(3 + 5i)$ is the conjugate of $-6 - 24i$.
Answer
$$z = (x - iy)(3 + 5i)$$

$$-i(5x-3y)$$

$$\overline{z} = -6 - 24i$$

Equating real and imaginary parts, we obtain

(3x+5y)-i(5x-3y)=-6-24i

$$3x + 5y = -6$$
 ... (i)

5x - 3y = 24... (ii)

Multiplying equation (i) by 3 and equation (ii) by 5 and then adding them, we obtain 9x + 15y = -18

$$\frac{25x - 15y = 120}{34x = 102}$$

$$\therefore x = \frac{102}{34} = 3$$

Putting the value of x in equation (i), we obtain

$$3(3) + 5y = -6$$

 $\Rightarrow 5v = -6 - 9 = -15$

$$\Rightarrow y = -3$$

Thus, the values of x and y are 3 and -3 respectively.

Question 15:

Find the modulus of
$$\frac{1+i}{1-i} - \frac{1-i}{1+i}$$
.

Answer
$$(1+i)^2 (1-i)^2$$

$$\begin{aligned} \frac{1+i}{1-i} - \frac{1-i}{1+i} &= \frac{\left(1+i\right)^2 - \left(1-i\right)^2}{\left(1-i\right)\left(1+i\right)} \\ &= \frac{1+i^2 + 2i - 1 - i^2 + 2i}{1^2 + 1^2} \end{aligned}$$

$$= \frac{1+i^2+2i-1-i^2+2i}{1^2+1^2}$$
$$= \frac{4i}{2} = 2i$$

 $\left| \frac{1+i}{1-i} - \frac{1-i}{1+i} \right| = |2i| = \sqrt{2^2} = 2$

 $u = x^3 - 3xv^2$, $v = 3x^2v - v^3$

On equating real and imaginary parts, we obtain
$$u = x^3 - 3xy^2$$
, $v = 3x^2y - y^3$

If $(x + iy)^3 = u + iv$, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$ Answer

 $\therefore \frac{u}{x} + \frac{v}{v} = \frac{x^3 - 3xy^2}{x} + \frac{3x^2y - y^3}{v}$

$$= \frac{x(x^2 - 3y^2)}{x} + \frac{y(3x^2 - y^2)}{y}$$
$$= x^2 - 3y^2 + 3x^2 - y^2$$

$$= x^{2} - 3y^{2} + 3x^{2} - 4x^{2}$$

$$= 4x^{2} - 4y^{2}$$

$$= 4(x^{2} - y^{2})$$

$$= 4(x^2 - y^2)$$

$$\therefore \frac{u}{x} + \frac{v}{v} = 4(x^2 - y^2)$$

Let a = a + ib and $\beta = x + iy$

... (i)

It is given that, $|\beta| = 1$

 $\therefore \sqrt{x^2 + y^2} = 1$

 \Rightarrow x² + v² = 1

Hence, proved.

Answer

 $(x+iv)^3 = u+iv$

 $\Rightarrow x^3 + (iv)^3 + 3 \cdot x \cdot iv(x + iv) = u + iv$

 $\Rightarrow x^3 + i^3 v^3 + 3x^2 vi + 3xv^2 i^2 = u + iv$

 \Rightarrow $(x^3 - 3xy^2) + i(3x^2y - y^3) = u + iv$

 \Rightarrow $x^3 - iv^3 + 3x^2vi - 3xv^2 = u + iv$

Question 17:

If a and β are different complex numbers with $\left|\beta\right|=1,$ then find $\left|\frac{\beta-\alpha}{1-\overline{\alpha}\beta}\right|$. Answer

Question 18: Find the number of non-zero integral solutions of the equation
$$\left|1-i\right|^x=2^x$$
 .

 $\left| \frac{\mathbf{z}_1}{\mathbf{z}_2} \right| = \frac{\left| \mathbf{z}_1 \right|}{\left| \mathbf{z}_2 \right|}$

Using (1)

Question 18:

 $\left| \frac{\beta - \alpha}{1 - \overline{\alpha} \, \Omega} \right| = 1$

 $\left| \frac{\beta - \alpha}{1 - \overline{\alpha} \beta} \right| = \left| \frac{(x + iy) - (a + ib)}{1 - (a - ib)(x + iy)} \right|$

 $= \frac{(x-a)+i(y-b)}{1-(ax+aiy-ibx+by)}$

 $= \frac{(x-a)+i(y-b)}{(1-ax-by)+i(bx-ay)}$

 $= \frac{|(x-a)+i(y-b)|}{|(1-ax-by)+i(bx-ay)|}$

 $= \frac{\sqrt{(x-a)^2 + (y-b)^2}}{\sqrt{(1-ax-by)^2 + (bx-ay)^2}}$

 $= \frac{\sqrt{(x^2 + y^2) + a^2 + b^2 - 2ax - 2by}}{\sqrt{1 + a^2(x^2 + y^2) + b^2(y^2 + x^2) - 2ax - 2by}}$

 $= \frac{\sqrt{1 + a^2 + b^2 - 2ax - 2by}}{\sqrt{1 + a^2 + b^2 - 2ax - 2by}}$

Answer

 $=\frac{\sqrt{x^2+a^2-2ax+y^2+b^2-2by}}{\sqrt{1+a^2x^2+b^2y^2-2ax+2abxy-2by+b^2x^2+a^2y^2-2abxy}}$

Question 20:
$$\left(\frac{1+i}{1-i}\right)^{m} = 1$$
then find the least positive integral value of m

, then find the least positive integral value of m. Answer

Question 19: If (a + ib)(c + id)(e + if)(q + ih) = A + iB, then show that $(a^2 + b^2) (c^2 + d^2) (e^2 + f^2) (q^2 + h^2) = A^2 + B^2$ Answer

 $\Rightarrow \frac{x}{2} = x$ $\Rightarrow x = 2x$ $\Rightarrow 2x - x = 0$ $\Rightarrow x = 0$ Thus, 0 is the only integral solution of the given equation. Therefore, the number of non-

 $\left|1-i\right|^{x}=2^{x}$

 $\Rightarrow (\sqrt{2})^x = 2^x$

 $\Rightarrow 2^{\frac{x}{2}} = 2^x$

 $\Rightarrow \left(\sqrt{1^2 + \left(-1\right)^2}\right)^x = 2^x$

zero integral solutions of the given equation is 0.

(a+ib)(c+id)(e+if)(g+ih) = A+iB

$$\Rightarrow \left(\frac{1-1+2i}{2}\right)^m = 1$$

$$\Rightarrow \left(\frac{2i}{2}\right)^m = 1$$

$$\Rightarrow i^m = 1$$

 $\left(\frac{1+i}{1-i}\right)^m = 1$

 $\Rightarrow \left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^m = 1$

 $\Rightarrow \left(\frac{\left(1+i\right)^2}{1^2+1^2}\right)^m = 1$

 $\Rightarrow \left(\frac{1^2 + i^2 + 2i}{2}\right)^m = 1$

- Therefore, the least positive integer is 1.

- Thus, the least positive integral value of m is 4 (= 4 × 1).