Exercise 2.1

Question 1:

If
$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$$
, find the values of x and y .

Answer

It is given that
$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore,
$$\frac{x}{3} + 1 = \frac{5}{3}$$
 and $y - \frac{2}{3} = \frac{1}{3}$

$$\frac{x}{3} + 1 = \frac{5}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{5}{3} - 1 \quad y - \frac{2}{3} = \frac{1}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{2}{3} \Rightarrow y = \frac{1}{3} + \frac{1}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{2}{3} \Rightarrow y = \frac{1}{3} + \frac{2}{3}$$

$$\Rightarrow x = 2$$
 $\Rightarrow y = 1$

$$\therefore x = 2 \text{ and } y = 1$$

Ouestion 2:

If the set A has 3 elements and the set $B = \{3, 4, 5\}$, then find the number of elements in $(A \times B)$?

Answer

It is given that set A has 3 elements and the elements of set B are 3, 4, and 5.

 \Rightarrow Number of elements in set B = 3

Number of elements in $(A \times B)$

= (Number of elements in A) × (Number of elements in B)

 $= 3 \times 3 = 9$

Thus, the number of elements in $(A \times B)$ is 9.

Question 3:

If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$.

Answer

$$G = \{7, 8\} \text{ and } H = \{5, 4, 2\}$$

We know that the Cartesian product P × Q of two non-empty sets P and Q is defined as $P \times Q = \{(p, q): p \in P, q \in Q\}$

$$::G \times H = \{(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)\}$$

$$H \times G = \{(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)\}$$

Question 4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

```
(i) If P = \{m, n\} and Q = \{n, m\}, then P \times Q = \{(m, n), (n, m)\}.
(ii) If A and B are non-empty sets, then A \times B is a non-empty set of ordered pairs (x, y)
such that x \in A and y \in B.
(iii) If A = \{1, 2\}, B = \{3, 4\}, then A \times (B \cap \Phi) = \Phi.
Answer
 (i) False
If P = \{m, n\} and Q = \{n, m\}, then
P \times Q = \{(m, m), (m, n), (n, m), (n, n)\}
(ii) True
(iii) True
Question 5:
If A = \{-1, 1\}, find A \times A \times A.
Answer
It is known that for any non-empty set A, A \times A \times A is defined as
A \times A \times A = \{(a, b, c): a, b, c \in A\}
It is given that A = \{-1, 1\}
\therefore A \times A \times A = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1), (-1, 1, 1
(1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)
Question 6:
If A \times B = {(a, x), (a, y), (b, x), (b, y)}. Find A and B.
Answer
It is given that A \times B = \{(a, x), (a, y), (b, x), (b, y)\}
We know that the Cartesian product of two non-empty sets P and Q is defined as P \times Q
= \{(p, q): p \in P, q \in Q\}
∴ A is the set of all first elements and B is the set of all second elements.
Thus, A = \{a, b\} and B = \{x, y\}
Ouestion 7:
Let A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\} and D = \{5, 6, 7, 8\}. Verify that
(i) A \times (B \cap C) = (A \times B) \cap (A \times C)
(ii) A \times C is a subset of B \times D
Answer
 (i) To verify: A \times (B \cap C) = (A \times B) \cap (A \times C)
We have B \cap C = {1, 2, 3, 4} \cap {5, 6} = \Phi
\thereforeL.H.S. = A × (B \cap C) = A × \Phi = \Phi
A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\}
A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}
\therefore R.H.S. = (A × B) \cap (A × C) = \Phi
∴L.H.S. = R.H.S
Hence, A \times (B \cap C) = (A \times B) \cap (A \times C)
(ii) To verify: A \times C is a subset of B \times D
A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}
B \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 6), (3, 7), (3, 6), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3,
(3, 8), (4, 5), (4, 6), (4, 7), (4, 8)
We can observe that all the elements of set A \times C are the elements of set B \times D.
```

Therefore, $A \times C$ is a subset of $B \times D$.

Question 8:

Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

Answer

$$A = \{1, 2\} \text{ and } B = \{3, 4\}$$

$$\therefore A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$$

$$\Rightarrow n(A \times B) = 4$$

We know that if C is a set with n(C) = m, then $n[P(C)] = 2^m$.

Therefore, the set $A \times B$ has $2^4 = 16$ subsets. These are

$$\Phi$$
, $\{(1, 3)\}$, $\{(1, 4)\}$, $\{(2, 3)\}$, $\{(2, 4)\}$, $\{(1, 3), (1, 4)\}$, $\{(1, 3), (2, 3)\}$, $\{(1, 3), (2, 4)\}$, $\{(1, 4), (2, 3)\}$, $\{(1, 4), (2, 4)\}$, $\{(2, 3), (2, 4)\}$,

Question 9:

Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A \times B, find A and B, where x, y and z are distinct elements.

Answer

It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in $A \times B$.

We know that A = Set of first elements of the ordered pair elements of $A \times B$

B = Set of second elements of the ordered pair elements of A
$$\times$$
 B.

$$\therefore x$$
, y, and z are the elements of A; and 1 and 2 are the elements of B. Since $n(A) = 3$ and $n(B) = 2$, it is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Question 10:

 $\Rightarrow n(A) = 3$

The Cartesian product $A \times A$ has 9 elements among which are found (-1, 0) and (0, 1). Find the set A and the remaining elements of $A \times A$.

Answer

We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$.

$$\therefore n(A \times A) = n(A) \times n(A)$$

It is given that
$$n(A \times A) = 9$$

$$\therefore n(A) \times n(A) = 9$$

The ordered pairs
$$(-1, 0)$$
 and $(0, 1)$ are two of the nine elements of A \times A.

We know that
$$A \times A = \{(a, a): a \in A\}$$
. Therefore, -1 , 0, and 1 are elements of A. Since $n(A) = 3$, it is clear that $A = \{-1, 0, 1\}$.

The remaining elements of set
$$A \times A$$
 are $(-1, -1)$, $(-1, 1)$, $(0, -1)$, $(0, 0)$, $(1, -1)$, $(1, 0)$, and $(1, 1)$

Exercise 2.2

Question 1:

Let A = $\{1, 2, 3, ..., 14\}$. Define a relation R from A to A by R = $\{(x, y): 3x - y = 0, where x, y \in A\}$. Write down its domain, codomain and range.

Answer

The relation R from A to A is given as

 $R = \{(x, y): 3x - y = 0, \text{ where } x, y \in A\}$

i.e., $R = \{(x, y): 3x = y, \text{ where } x, y \in A\}$

 $\therefore R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation.

 \therefore Domain of R = {1, 2, 3, 4}

The whole set A is the codomain of the relation R.

 \therefore Codomain of R = A = {1, 2, 3, ..., 14}

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of R = {3, 6, 9, 12}

Question 2:

Define a relation R on the set **N** of natural numbers by $R = \{(x, y): y = x + 5, x \text{ is a natural number less than 4; } x, y \in \mathbf{N} \}$. Depict this relationship using roster form. Write down the domain and the range.

Answer

R = $\{(x, y): y = x + 5, x \text{ is a natural number less than } 4, x, y \in \mathbb{N}\}$

The natural numbers less than 4 are 1, 2, and 3.

 $\therefore R = \{(1, 6), (2, 7), (3, 8)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation.

: Domain of R = $\{1, 2, 3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of R = {6, 7, 8}

Question 3:

 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$. Define a relation R from A to B by $B = \{(x, y): the difference between x and y is odd; <math>x \in A, y \in B\}$. Write R in roster form.

Answer

 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$

 $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$

 $\therefore R = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$

Question 4:

The given figure shows a relationship between the sets P and Q. write this relation (i) in set-builder form (ii) in roster form.

What is its domain and range?

Answer

According to the given figure, $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$

(i) $R = \{(x, y): y = x - 2; x \in P\}$ or $R = \{(x, y): y = x - 2 \text{ for } x = 5, 6, 7\}$

(ii) $R = \{(5, 3), (6, 4), (7, 5)\}$

Domain of $R = \{5, 6, 7\}$ Range of $R = \{3, 4, 5\}$

Question 5:

Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by

 $\{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}.$

(i) Write R in roster form (ii) Find the domain of R

(iii) Find the range of R.

Answer

 $A = \{1, 2, 3, 4, 6\}, R = \{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}$

(i) $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (4,$

(6, 6)

(ii) Domain of $R = \{1, 2, 3, 4, 6\}$ (iii) Range of $R = \{1, 2, 3, 4, 6\}$

Question 6:

Determine the domain and range of the relation R defined by $R = \{(x, x + 5): x \in \{0, 1, 1, 1\}\}$ 2, 3, 4, 5}}.

Answer

 $R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}$

 $\therefore R = \{(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$

 \therefore Domain of R = {0, 1, 2, 3, 4, 5}

Range of $R = \{5, 6, 7, 8, 9, 10\}$

Question 7:

Write the relation R = $\{(x, x^3): x \text{ is a prime number less than } 10\}$ in roster form.

Answer

 $R = \{(x, x^3): x \text{ is a prime number less than } 10\}$

The prime numbers less than 10 are 2, 3, 5, and 7.

 $\therefore R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$

Question 8:

Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

Answer

It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

 $A \times B = \{(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)\}$

Since $n(A \times B) = 6$, the number of subsets of $A \times B$ is 2^6 .

Therefore, the number of relations from A to B is 2^6 .

Question 9:

Let R be the relation on **Z** defined by $R = \{(a, b): a, b \in \mathbf{Z}, a - b \text{ is an integer}\}$. Find the domain and range of R.

Answer

 $R = \{(a, b): a, b \in \mathbf{Z}, a - b \text{ is an integer}\}$

It is known that the difference between any two integers is always an integer.

∴Domain of R = Z

Range of R = Z

Exercise 2.3

Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

(ii) $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$

(iii) $\{(1, 3), (1, 5), (2, 5)\}$

Answer

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 5, 8, 11, 14, 17\}$ and range = $\{1\}$

(ii) $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$

Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 4, 6, 8, 10, 12, 14\}$ and range = $\{1, 2, 3, 4, 5, 6, 7\}$

(iii) $\{(1, 3), (1, 5), (2, 5)\}$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Question 2:

Find the domain and range of the following real function:

(i)
$$f(x) = -|x|$$
 (ii) $f(x) = \sqrt{9 - x^2}$

Answer

(i)
$$f(x) = -|x|, x \in \mathbb{R}$$

We know that
$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

$$\therefore f(x) = -|x| = \begin{cases} -x, & x \ge 0 \\ x, & x < 0 \end{cases}$$

Since f(x) is defined for $x \in \mathbf{R}$, the domain of f is \mathbf{R} .

It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers.

∴The range of f is $(-\infty, 0]$.

(ii)
$$f(x) = \sqrt{9-x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is $\{x: -3 \le x \le 3\}$ or [-3, 3].

For any value of x such that $-3 \le x \le 3$, the value of f(x) will lie between 0 and 3.

∴The range of f(x) is $\{x: 0 \le x \le 3\}$ or [0, 3].

Question 3:

A function f is defined by f(x) = 2x - 5. Write down the values of

(i) f(0), (ii) f(7), (iii) f(-3)

Answer The given function is f(x) = 2x - 5.

Therefore,
(i)
$$f(0) = 2 \times 0 - 5 = 0 - 5 = -5$$

(ii) $f(7) = 2 \times 7 - 5 = 14 - 5 = 9$

(iii) $f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$

Question 4: The function 't' which maps temperature in degree Celsius into temperature in degree

Fahrenheit is defined by $t(C) = \frac{9C}{5} + 32$ Find (i) t(0) (ii) t(0)

Find (i) t (0) (ii) t (28) (iii) t (-10) (iv) The value of C, when t(C) = 212 Answer

The given function is $t(C) = \frac{9C}{5} + 32$

Therefore, $t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$

$$t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$$

$$t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5}$$

 $t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$

$$t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$$

i) It is given that $t(C) = 212$

(iv) It is given that t(C) = 212

$$\therefore 212 = \frac{9C}{5} + 32$$

$$\Rightarrow \frac{9C}{5} = 212 - 32$$
$$\Rightarrow \frac{9C}{5} = 180$$

 $\Rightarrow 9C = 180 \times 5$

$$\Rightarrow C = \frac{180 \times 5}{9} = 100$$
Thus, the value of t, when $t(C) = 212$, is 100.

Question 5:

Find the range of each of the following functions.

(i) f(x) = 2 - 3x, $x \in \mathbb{R}$, x > 0.

(ii) $f(x) = x^2 + 2$, x, is a real number.

(iii) f(x) = x, x is a real number Answer

(i) $f(x) = 2 - 3x, x \in \mathbf{R}, x > 0$

The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as

Х	0.01	0.1	0.9	1	2	2.5	4	5	
f(x)	1.97	1.7	-0.7	-1	-4	-5.5	-10	-13	

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2.

i.e., range of $f = (-\infty, 2)$

Alter:

Let x > 0

$$\Rightarrow 3x > 0$$

$$\Rightarrow$$
 2 $-3x$ < 2

$$\Rightarrow f(x) < 2$$

$$\therefore$$
Range of $f = (-\infty, 2)$

(ii)
$$f(x) = x^2 + 2$$
, x , is a real number

The values of f(x) for various values of real numbers x can be written in the tabular form as

X	0	±0.3	±0.8	±1	±2	±3	
f(x)	2	2.09	2.64	3	6	11	

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2.

i.e., range of $f = [2, \infty)$

Alter:

Let x be any real number.

Accordingly,

$$x^2 \ge 0$$

$$\Rightarrow x^2 + 2 \ge 0 + 2$$

$$\Rightarrow x^2 + 2 \ge 2$$

$$\Rightarrow f(x) \geq 2$$

$$\therefore$$
 Range of $f = [2, \infty)$

(iii)
$$f(x) = x$$
, x is a real number

It is clear that the range of *f* is the set of all real numbers.

$$\therefore$$
 Range of $f = \mathbf{R}$

Question 1:

$$f(x) = \begin{cases} x^2, & 0 \le x \le 3\\ 3x, & 3 \le x \le 10 \end{cases}$$

The relation f is defined by

$$g(x) = \begin{cases} x^2, & 0 \le x \le 2\\ 3x, & 2 \le x \le 10 \end{cases}$$

The relation g is defined by

Show that f is a function and g is not a function.

Answer

$$f(x) = \begin{cases} x^2, & 0 \le x \le 3\\ 3x, & 3 \le x \le 10 \end{cases}$$

The relation f is defined as It is observed that for

$$0 \le x < 3, f(x) = x^2$$

$$3 < x \le 10, f(x) = 3x$$

Also, at
$$x = 3$$
, $f(x) = 3^2 = 9$ or $f(x) = 3 \times 3 = 9$ i.e., at $x = 3$, $f(x) = 9$

Therefore, for $0 \le x \le 10$, the images of f(x) are unique.

Thus, the given relation is a function.

$$g\left(x\right) = \begin{cases} x^2, & 0 \le x \le 2\\ 3x, & 2 \le x \le 10 \end{cases}$$
 The relation g is defined as

It can be observed that for x = 2, $g(x) = 2^2 = 4$ and $g(x) = 3 \times 2 = 6$ Hence, element 2 of the domain of the relation q corresponds to two different images i.e., 4 and 6. Hence, this relation is not a function.

Question 2:

If
$$f(x) = x^2$$
, find $\frac{f(1.1) - f(1)}{(1.1-1)}$.

Answer $f(x) = x^2$

$$\therefore \frac{f(1.1) - f(1)}{(1.1 - 1)} = \frac{(1.1)^2 - (1)^2}{(1.1 - 1)} = \frac{1.21 - 1}{0.1} = \frac{0.21}{0.1} = 2.1$$

Question 3:

Find the domain of the function
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

Answer

The given function is
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$$

$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$$

It can be seen that function f is defined for all real numbers except at x = 6 and x = 2. Hence, the domain of f is $\mathbb{R} - \{2, 6\}$.

Question 4:

Find the domain and the range of the real function f defined by $f(x) = \sqrt{(x-1)}$ Answer

The given real function is $f(x) = \sqrt{x-1}$

It can be seen that $\sqrt{x-1}$ is defined for $(x-1) \ge 0$.

i.e.,
$$f(x) = \sqrt{(x-1)}$$
 is defined for $x \ge 1$.

Therefore, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of $f = [1, \infty)$.

As
$$x \ge 1 \Rightarrow (x-1) \ge 0 \Rightarrow \sqrt{x-1} \ge 0$$

Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of $f = [0, \infty)$.

Question 5:

Find the domain and the range of the real function f defined by f(x) = |x - 1|.

The given real function is f(x) = |x - 1|.

It is clear that |x - 1| is defined for all real numbers.

 \therefore Domain of $f = \mathbf{R}$

Also, for $x \in \mathbf{R}$, |x - 1| assumes all real numbers.

Hence, the range of f is the set of all non-negative real numbers.

Question 6:

$$f = \left\{ \left(x, \ \frac{x^2}{1 + x^2} \right) : x \in \mathbf{R} \right\}$$

 $f = \left\{ \left(x, \frac{x^2}{1 + x^2} \right) : x \in \mathbf{R} \right\}$ be a function from **R** into **R**. Determine the range of *f*.

Answer

$$f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) : x \in \mathbf{R} \right\}$$

$$= \left\{ (0, 0), \left(\pm 0.5, \frac{1}{5} \right), \left(\pm 1, \frac{1}{2} \right), \left(\pm 1.5, \frac{9}{13} \right), \left(\pm 2, \frac{4}{5} \right), \left(3, \frac{9}{10} \right), \left(4, \frac{16}{17} \right), \dots \right\}$$

The range of f is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.

[Denominator is greater numerator]

Thus, range of f = [0, 1)

Question 7:

Let $f, g: \mathbf{R} \to \mathbf{R}$ be defined, respectively by f(x) = x + 1, g(x) = 2x - 3. Find f + g, f - g

$$\frac{J}{g}$$
 and $\frac{J}{g}$. Answer $f, g: \mathbf{R} \to \mathbf{R}$ is defined as $f(x) = x + 1$, $g(x) = 2x - 3$

$$(f+g)(x) = f(x) + g(x) = (x+1) + (2x-3) = 3x-2$$

 $\therefore (f+g)(x) = 3x-2$

$$\therefore (f+g)(x) = 7(x) + g(x) = (x+1) + (2x-3) = 3x-2$$

$$\therefore (f+g)(x) = 3x-2$$

$$(f-g)(x) = f(x) - g(x) = (x+1) - (2x-3) = x+1-2x+3 = -x+4$$

$$\therefore (f-g)(x) = -x+4$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbf{R}$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, \ 2x-3 \neq 0 \text{ or } 2x \neq 3$$
$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, \ x \neq \frac{3}{2}$$

Question 8:

Let $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be a function from **Z** to **Z** defined by f(x) = ax

Let
$$f = \{(1, + b, \text{ for som})\}$$

$$+ b$$
, for som

$$+$$
 b , for some integers a , b . Determine a , b .

Answer
$$f = f(1, 1)$$

- $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ f(x) = ax + b
- $(1, 1) \in f$ $\Rightarrow f(1) = 1$
- $\Rightarrow a \times 1 + b = 1$
- $\Rightarrow a + b = 1$
- $(0, -1) \in f$ $\Rightarrow f(0) = -1$

 $\Rightarrow a \times 0 + b = -1$

- $\Rightarrow b = -1$ On substituting b = -1 in a + b = 1, we obtain $a + (-1) = 1 \Rightarrow a = 1 + 1 = 2$.
- Thus, the respective values of a and b are 2 and -1.
- **Question 9:**
- Let R be a relation from **N** to **N** defined by $R = \{(a, b): a, b \in \mathbb{N} \text{ and } a = b^2\}$. Are the
- following true?

- (i) $(a, a) \in \mathbb{R}$, for all $a \in \mathbb{N}$ (ii) $(a, b) \in \mathbb{R}$, implies $(b, a) \in \mathbb{R}$
- (iii) $(a, b) \in \mathbb{R}$, $(b, c) \in \mathbb{R}$ implies $(a, c) \in \mathbb{R}$.
- Justify your answer in each case. Answer
- $R = \{(a, b): a, b \in \mathbb{N} \text{ and } a = b^2\}$
- (i) It can be seen that $2 \in \mathbf{N}$; however, $2 \neq 2^2 = 4$.
- Therefore, the statement " $(a, a) \in \mathbb{R}$, for all $a \in \mathbb{N}$ " is not true. (ii) It can be seen that $(9, 3) \in \mathbb{N}$ because $9, 3 \in \mathbb{N}$ and $9 = 3^2$.
- Now, $3 \neq 9^2 = 81$; therefore, $(3, 9) \notin \mathbf{N}$

Therefore, the statement " $(a, b) \in \mathbb{R}$, implies $(b, a) \in \mathbb{R}$ " is not true. (iii) It can be seen that $(9, 3) \in \mathbb{R}$, $(16, 4) \in \mathbb{R}$ because 9, 3, 16, $4 \in \mathbb{N}$ and $9 = 3^2$ and 16

 $= 4^2$.

Now, $9 \neq 4^2 = 16$; therefore, $(9, 4) \notin \mathbf{N}$ Therefore, the statement " $(a, b) \in R$, $(b, c) \in R$ implies $(a, c) \in R''$ is not true.

Question 10:

Let A = $\{1, 2, 3, 4\}$, B = $\{1, 5, 9, 11, 15, 16\}$ and $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 9), (3, 1), (4, 5), (2, 9), (3, 1), (4, 1),$ 11)}. Are the following true?

(i) f is a relation from A to B (ii) f is a function from A to B.

Justify your answer in each case. Answer

 $A = \{1, 2, 3, 4\}$ and $B = \{1, 5, 9, 11, 15, 16\}$

 $\therefore A \times B = \{(1, 1), (1, 5), (1, 9), (1, 11), (1, 15), (1, 16), (2, 1), (2, 5), (2, 9), (2, 11), (2, 1$

(2, 15), (2, 16), (3, 1), (3, 5), (3, 9), (3, 11), (3, 15), (3, 16), (4, 1), (4, 5), (4, 9), (4, 1)11), (4, 15), (4, 16)}

It is given that $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$ (i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.

It is observed that f is a subset of A \times B.

Thus, f is a relation from A to B. (ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and

11, relation *f* is not a function.

Question 11:

Let f be the subset of $\mathbf{Z} \times \mathbf{Z}$ defined by $f = \{(ab, a+b): a, b \in \mathbf{Z}\}$. Is f a function from \mathbf{Z} to **Z**: justify your answer. Answer

The relation f is defined as $f = \{(ab, a + b): a, b \in \mathbf{Z}\}$

We know that a relation f from a set A to a set B is said to be a function if every element of set A has unique images in set B.

Since 2, 6, -2, $-6 \in \mathbf{Z}$, $(2 \times 6, 2 + 6)$, $(-2 \times -6, -2 + (-6)) \in f$ i.e., (12, 8), $(12, -8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8. Thus, relation f is not a function.

Question 12:

Let A = $\{9, 10, 11, 12, 13\}$ and let $f: A \rightarrow \mathbf{N}$ be defined by f(n) = the highest prime factor of n. Find the range of f.

Answer

 $A = \{9, 10, 11, 12, 13\}$ $f: A \rightarrow N$ is defined as

f(n) = The highest prime factor of n

Prime factor of 9 = 3Prime factors of 10 = 2, 5

Prime factor of 11 = 11Prime factors of 12 = 2, 3

Prime factor of 13 = 13

f(9) = The highest prime factor of 9 = 3

f(10) = The highest prime factor of 10 = 5 f(11) = The highest prime factor of 11 = 11 f(12) = The highest prime factor of 12 = 3 f(13) = The highest prime factor of 13 = 13 The range of f is the set of all f(n), where $n \in A$. \therefore Range of $f = \{3, 5, 11, 13\}$