log up log in
ncert help

NCERT Solutions, CBSE Sample paper, Latest Syllabus, NCERT Books, Last Year Question Papers and Many More ...

CBSE Video lectures for download

     

=Chapter 1 Some Basic Concepts Of Chemistry

=Chapter 2 Structure Of Atom

=Chapter 3 Classification of Elements And Periodicity In Properties of Elements

=Chapter 4 Chemical Bonding And Molecular Structure

=Chapter 5 States of Matter

=Chapter 6 Thermodynamics

=Chapter 11 The p- Block Element

=Chapter 7 Equilibrium

=Chapter 8 Redox Reactions

=Chapter 10 The s- Block Element

=Chapter 12 Organic chemistry : Some Basic Principles and Techniques

=Chapter 13 Hydrocarbon

=Chapter 14 Environmental Chemistry

 

Chapter 6 Thermodynamics

Thermodynamics Laws in Pdf Notes
Zeroth Law Second Law 3rd Law

 Thermodynamics :

Science which deals with study of different forms of energy and quantitative relationship.

System & Surroundings :

The part of universe for study is called system and remaining portion is surroundings.

State of system & state function :

State of system is described in terms of T, P, V etc. The property which depends only on state of system not upon path is called state function eg. P, V, T, E, H, S etc.

Extensive & Intensive Properties :

Properties which depends on quantity of matter called extensive prop. eg. mass, volume, heat capacity, enthalpy, entropy  etc.  The  properties  which do  not  depends  on  matter  present depends  upon  nature  of substance called  Intensive properties. eg.  T,P, density, refractive index, viscosity, bp, pH, mole fraction etc.

Internal energy :

The total energy with a system. i.e. U =  Ee En + Ec + Ep + Ek + ------ ∆ U = U2 – U1 or UP – UR & U is state function and extensive properly. If U1 >U2 energy is released.

 Heat (q) :

It I a form of energy which is exchanged between system and surrounding due to difference of temperature. Unit is Joule (J) or Calorie (1 Calorie = 4.18    J).

First Law of Thermodynamics :

It is law of conservation energy. Energy can neither be created not destroyed, it may be converted from one from into another. Mathematically   ∆U = q + w, w = –p.   V∆ (work of expansion) ∆U = q – p. ∆ V or q = ∆ U + p. ∆V, q,w are not state function. ∆But   U is state function.

Enthalpy (H):

At constant volume ∆V = 0,qv =∆So H = U + p.   ∆V, qp = H2 H1 = ∆H ➱ ∆H =  ∆ U + P.∆V.

Relationship between qp, qv i.e.   ∆H&  ∆U  It is ∆ H=  ∆U+  ∆ng.RT or qp = qv +  ∆    ng.RT

Exothermic and Endothermic reactions :

 ∆H = –Ve for exothermic and ∆H = +Ve for endothermic reaction i.e. evolution and absorption of heat.
Eg C+O2      → CO2 + 393.5 KJ,   H = –393.5 KJ (exothermic) N2 + O2       → 2NO – 180.7 KJ,   H = 180.7 KJ (Endothermic)

Enthalpy of reaction (  ∆rH) :

The amount of heat evolved or absorbed when the reaction is completed.

Standard Enthalpy of reaction ( ∆ rHo) at 1 bar pressure and specific temp. (290K) i.e. standard state.

 Different types of Enthalpies of reactions:

( i ) Enthalpy of combustion (∆cH) ( ii) Enthalpy of formation (∆fH)
( iii ) Enthalpy of neutralization ( iv ) Enthalpy of solution
( v ) Enthalpy of atomization (∆aH) ( vi ) Enthalpy of Ionisation (∆iH)
( vii ) Enthalpy of Hydration (∆hyolH) ( viii ) Enthalpy of fusion (∆fusH)
( ix ) Enthalpy of vaporization (∆vapH) ( x ) Enthalpy of sublimation (∆subH)

(∆subH) = ∆fus(H) - ∆vapH) --------

Bond  enthalpy :  

It  is  amount  of  energy  released  when  gaseous  atoms combines to form one mole of bonds between them or heat absorbed when one mole of bonds between them are broken to give free gaseous atoms. Further ∆ rH = ∑B.E. (Reactants) - ∑B.E. (Products)

Spontaneous & Non Spontaneous Processes :

A process which can take place by itself is called spontaneous process. A process which can neither take place by itself or by initiation is called non Spontaneous.

Driving forces for spontaneous process :

(i) Tendency for minimum energy state.
(ii) Tendency for maximum randomness.

Entropy (S) :

It is measure of randomness or disorder of system.i.e. Gas>Liquid>Solid. 

Spontaneity in term of (  ∆S ) ∆S(total) =   ∆S(universe) =   ∆S(system) +   ∆S(surrounding)  If   ∆S(total) is +ve, the process is spontaneous If ∆S(total) is –ve, the process is non spontaneous.

Second Law of thermodynamics :

In any spontaneous process, the entropy of the universe always increases. A spontaneous process cannot be reversed.

Gibb’s free energy (G) :

defined as G = H – T.S &  ∆G =  ∆H – T.∆S (Gibb’s Helmholts equation) it is equal useful work .e. -   ∆G = W(useful) = W(max).If G = ve, process is spontaneous.

Effects of T on spontaneity of a process :

∆G =   ∆H – T.  ∆ S.
(i) For endothermic process may be non spontaneous at law temp.
(ii) For exothermic process  may be  non spontaneous at  high temp. and spontaneous at law temp.

Calculation of ( ∆ rGo)

rGo =   ∑∆fGo (p) -   ∑ ∆fGo (r)

Relationship between (  ∆rGo) & equilibrium constant (k)

∆G =   ∆Go + RTlnQ &  ∆Go = –2.303RT logk.

Calculation of entropy change:

 ∆rSo =    ∑∆ So (p) -   So (r)

Zeroth Law Second Law 3rd Law



Open your video in VLC player or add '.mp4' extension at end of the video


Thermodynamics Laws in Pdf Notes Zeroth Law Second Law 3rd Law
zeroth law of thermodynamics, thermodynamics zeroth law, zeroth law of thermodynamics examples, what is zeroth law of thermodynamics,

Please Click on G-plus or Facebook
   



Please send your queries at contact ncerthelp@gmail.com

 

Every effort has been made to ensure accuracy of data on this web site. We are not responsible for any type of mistake in data.
All pdf files or link of pdf files are collected from various Resources Or sent by Students. If any pdf file have any copyright voilation please inform us we shell remove that file from our website.Thanks