**Question 3. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?**

**Answer:**

To get the maximum number column here we always find HCF and for minimum number we find LCM

So can use Euclidâ€™s algorithm to find the HCF.

Here 616> 32 so always divide greater number with smaller one

When we divide 616 by 32 we get quotient 19 and remainder 8

So we can write it as

616 = 32 x 19 + 8

Now divide 32 by 8 we get quotient 4 and no remainder

So we can write it as

32 = 8 x 4 + 0

As there are no remainder so our HCF will 8

**So that maximum number of columns in which they can march is 8. **