**Question 1. Use Euclid’s division algorithm to find the HCF of :**

(i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 255

**Answer: (i) **

Here 225 > 135 we always divide greater number with smaller one.

Divide 225 by 135 we get 1 quotient and 90 as remainder so that

225= 135*1 + 90

Divide 135 by 90 we get 1 quotient and 45 as remainder so that

135= 90*1 + 45

Divide 90 by 45 we get 2 quotient and no remainder so we can write it as

90 = 2*45+ 0

As there are no remainder so deviser 45 is our HCF

**(ii) **

38220>196 we always divide greater number with smaller one.

Divide 38220 by 196 then we get quotient 195 and no remainder so we can write it as

38220 = 196 * 195 + 0

As there is no remainder so deviser 196 is our HCF

**(iii)**

867>255 we always divide greater number with smaller one.

divide 867 by 255 then we get quotient 3 and remainder is 102

so we can write it as

867 = 255 * 3 + 102

Divide 255 by 102 then we get quotient 2 and remainder is 51

So we can write it as

255 = 102 * 2 + 51

Divide 102 by 51 we get quotient 2 and no remainder

So we can write it as

102 = 51 * 2+ 0

As there is no remainder so deviser 51 is our answer