### **SAMPLE PAPER**

#### Class XI

#### **Chemistry**

Time allowed: 3 hours Max marks: 70

#### **General instructions:**

- All questions are compulsory.
- Questions must be attempted serial wise only.
- Answers must be precise and to the point.
- Use log table if necessary.
- Use of calculators is not allowed.
- 1. Calculate the number of moles of carbon atoms and hydrogen atom in three moles of ethane.

| 2.             | Out of CH <sub>3</sub> COO <sup>-</sup> and OH <sup>-</sup> which is stronger base and why?                                                                                                                                                | 1<br>1 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 3.<br>4.<br>5. | For an isolated system, $\Delta U$ =0, then what will be the $\Delta S$ ? Which electrons take part in bond formation .                                                                                                                    | 1 1    |
| 6.             | Which of the two O <sub>2</sub> NCH <sub>2</sub> CH <sub>2</sub> O <sup>-</sup> . Or CH <sub>2</sub> CH <sub>2</sub> OH <sup>-</sup> is expected to be more stable?                                                                        | 1      |
| 7.             | What would be the IUPAC name and symbol for the element with atomic number 120?                                                                                                                                                            | 1      |
| 9.             | Write down Vander wall equation for one mole of real gas? A sample of NaNO <sub>3</sub> weighing 0.83 g is placed in a 50ml volumetric flask. The flask is then filled with water to the mark on the neck. What is the molarity of         | 1      |
|                | the solution?                                                                                                                                                                                                                              | 2      |
| 10             | Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.  What is the difference between a quantum and a photon?  Among the second period elements the actual ionization enthalpies are in the | 2 2    |
|                | order of: Li <b<be<c<o<n<f<ne< td=""><td>2</td></b<be<c<o<n<f<ne<>                                                                                                                                                                         | 2      |

Explain why:-Be has higher  $\Delta_i H$  than B.O has lower than  $\Delta_i H$  than N and F.

12. Arrange the following compounds in order of increasing ionic character in the molecules: LiF,  $K_2O$ ,  $N_2$ ,  $SO_2$  and CIF<sub>3</sub>.

13. for the reaction:

 $2A(g) + B(g) \rightarrow 2D(g)$ 

 $\Delta H^{\circ}$  = -10.5KJ and  $\Delta S^{\circ}$  = -44.1 JK<sup>-1</sup> mol<sup>-1</sup> Calculate  $\Delta G^{\circ}$  for the reaction and predict whether the reaction may occur spontaneously.

14. What is meant by conjugate acid base pair? Find the conjugate acid/base for the following: HNO<sub>2</sub>, CN<sup>-</sup>,

15. We do not see a car moving as a wave on the road. Why?

2

16. Would you expect the second electron gain enthalpy of O as positive, more –ve or less –ve than the first. Justify your answer.

17. How many electrons in an atom may have the following quantum numbers:

$$1.n=4$$
,  $m=-1/2$ 

1+1=2

18. In sulphur estimation 0.157 g of an organic compound gave 0.4813g of BaSO4. What is the percentage of sulphur in the organic compound?

19. Although geometries of NH<sub>3</sub> and H<sub>2</sub>O molecules are distorted tetrahedral, bond angles in water is less then that of ammonia. Discuss.

2

20. (i) Density of gas is found to be 5.46g/dm<sup>3</sup> at 27°C at 2 bar pressure. What will be its density at STP.

(ii) Critical temperature for CO<sub>2</sub> and CH<sub>4</sub> are 31.1°C and -81.9°C respectively. Which of these has stronger intermolecular forces and why? **2+1=3** 

21. Calculate the enthalpy change for the process:

 $CCI_4(g) \rightarrow C(g) + 4CI(g)$ 

And Calculate bond Enthalpy of C-Cl in CCl<sub>4</sub>(g)

ΔvapH° (CCL4)=30.5 KJ/mol

 $\Delta_f H^{\circ}_{(CCl4)} = -135 \text{ KJ/mol}$ 

 $\Delta_a H^{\circ}_{(c)}=715.0 \text{ KJ/mol}$ 

 $\Delta_a H^{\circ}_{(CC|2)}=242 \text{ KJ/mol.}$ 

3

22. Equilibrium constant Kc for the reaction:

 $N_2(g) + 3H_2(g)$  2NH<sub>3</sub>(g) at 500K is 0.061.

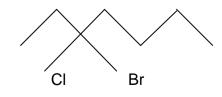
At particular time analysis shows that composition of the reaction mixture is  $3.0 \, \text{mo/L N}_2 \, 2.0 \, \text{mol/L NH}_3$ . Is the reaction at equilibrium? If not in which direction does the reaction tend to proceed to equilibrium and why?

23. (i) Find the oxidation state of P in NaH<sub>2</sub>PO<sub>4</sub>.

(ii) What is the function of salt bridge in electrochemical-cell?

1+2

OR


Complete and balance the following equation.

$$MnO_4^- + H_2S \rightarrow Mn^{2+} + S$$
 (acidic medium)

3

24. (i) Write IUPAC names of following:





2+1=3(ii) Write bond line formula of isopropyl alcohol. 25. Arrange the following: i)CaH<sub>2</sub>, BeH<sub>2</sub> and TiH<sub>2</sub> in order of increasing electrical conductance? ii) H-H, D-D and F-F in order of increasing bond dissociation enthalpy. 1+1+1=3 iii) NaH, MgH<sub>2</sub> and H<sub>2</sub>O in order of increasing reducing property? 26. Carbon monoxide gas is more dangerous than carbon dioxide gas. Why? 3 27 1. Draw the resonance structure for CH<sub>3</sub>-CH=CH-CH3 Using curve arrow notation. ii) Name the best and latest technique for isolation, purification and Separation of organic compounds. 2+1=3 28. (i)State as to why: (a) Aqueous solution of Na<sub>2</sub>CO<sub>3</sub> is alkaline. (b) BaO is soluble but BaSO<sub>4</sub> is insoluble in water. (ii) Draw structure of BeCl<sub>2</sub> (vapour). (iii) Complete the following: a)  $KO_2 + H_2O \rightarrow$ Na(s) +  $H_2O \rightarrow$ b) 2+1+2=5 OR (I) What happens when: (a) Sodium peroxide dissolves in water. (b) Gypsum is heated to 393 K. (ii) Account for the following: (a) Lithium salts are commonly hydrated and those of other alkali metal ions are usually anhydrous. (iii) What do you understand by the term 'autoprotolysis' of water? What is its 1+1+1+2=5 significance? 29. (i) Give reasons for the following: (a) Concentrated HNO<sub>3</sub> can be transported in aluminium container. (b) Atomic radius of Ga is lower than that of Al. (ii) What happen when B<sub>2</sub>H<sub>6</sub>(diborane) is heated with excess of ammonia? (iii) Describe inert pair effect with reference to 13<sup>th</sup> group. 2+1+2=5 **OR** (i) Give reasons: (a) Which is the most stable form of carbon? (b) Lead is known not to form PbI<sub>4</sub> (c) B-F bond length in BF<sub>3</sub> (130pm) and BF<sub>4</sub> (143pm) differ. (ii) What happened when: (a) Borax is heated strongly. (b) CO is being heated with ZnO. 3+2=5

- 30. i) Arrange the following: HCl, HBr, HI, HF in order of their decreasing reactivity towards alkenes.
  - ii) How ethylene can be converted into ethane?
  - iii) Define heat of hydrogenation?

iv) Why is wurtz reaction not preferred for the preparation of alkanes containing odd number of carbon atoms? Illustrate your answer by taking an example.

1+1+1+2=5

#### OR

- i) What effect does branching of an alkane chain has on its boiling point?
- ii) Define Ozonolysis Reaction?
- iii) Define cracking?
- iv) Why benzene is extra ordinary stable though it contains three double bonds?
- v) Why Nitro-benzene doesn't undergo Friedel-Craft alkylation? 1+1+1+1

### **BLUE PRINT**

|      |                                  |       |     |    |     | Long    | Total |
|------|----------------------------------|-------|-----|----|-----|---------|-------|
| S.No | Chapters                         | V.S.A | S.A |    | S.A | Answers | Marks |
| 1    | Some basic concepts of chemistry | 1     |     | 2  |     |         | 3     |
| 2    | Structure of Atom                | 1+1   | 2+2 |    |     |         | 6     |
|      | Classification of Elements and   |       |     |    |     |         |       |
| 3    | Periodicity in property          |       | 2+2 |    |     |         | 4     |
|      | Chemical Bonding and Molecular   |       |     |    |     |         |       |
| 4    | Structure                        | 0     |     | 2  | 3   |         | 5     |
| 5    | States of Matter                 | 1     |     |    | 3   |         | 4     |
| 6    | Thermodynamics                   | 1     |     | 2  | 3   |         | 6     |
| 7    | Equilibrium                      | 1     |     | 2  | 3   |         | 6     |
| 8    | Redox Reactions                  |       |     |    | 3   |         | 3     |
| 9    | Hydrogen                         |       |     |    | 3   |         | 3     |
| 10   | S-block Elements                 |       |     |    |     | 5       | 5     |
| 11   | P-Block Elements                 |       |     | 2  |     | 5       | 7     |
|      | Oraganic Chemistry: Some basic   |       |     |    |     |         |       |
| 12   | Principles And Techniques        | 1+1   |     | 2  | 3   |         | 7     |
| 13   | Hydrocarbons                     |       |     |    | 3   | 5       | 8     |
| 14   | Environmental Chemistry          |       |     |    | 3   |         | 3     |
|      | TOTAL                            | 8     |     | 20 | 27  | 15      | 70    |

| Weightage to difficulty level |            |      |         |     |
|-------------------------------|------------|------|---------|-----|
|                               | level      | easy | Average | HOD |
|                               | Percentage | 15   | 70      | 15  |

## **Marking scheme**

| Q.No | Answers                                                                                                                                                                                                                                                                                                                                                                            |                         |                                      |                                 |                   |                | Marks |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|---------------------------------|-------------------|----------------|-------|
| 1    | As 1 mol of ethane ( $C_2H_6$ ) contains 2 moles of carbon atoms.<br>3 moles of ethane contains $2x3 = 6$ moles of carbon atom.                                                                                                                                                                                                                                                    |                         |                                      |                                 |                   |                |       |
|      | As 1 mole of ethane contains 6 moles of hydrogen. 3 moles of ethane will contains 6x3 = 18 moles of hydrogen atom.                                                                                                                                                                                                                                                                 |                         |                                      |                                 |                   |                |       |
| 2    | OH <sup>-</sup> ions can combine with H <sup>+</sup> ions more readily than CH <sub>3</sub> COO <sup>-</sup> ions can do.<br>Hence, OH <sup>-</sup> is a strong base. Alternatively, the conjugate acid of CH <sub>3</sub> COO <sup>-</sup> and OH <sup>-</sup> are CH <sub>3</sub> COOH and H <sub>2</sub> O. As CH <sub>3</sub> COOH is stronger acid than H <sub>2</sub> O, the |                         |                                      |                                 |                   |                |       |
|      | conjugate ba                                                                                                                                                                                                                                                                                                                                                                       | se of CH <sub>3</sub> ( | COOH, viz CH                         | l₃COO⁻ will be a                | weaker base.      |                | 1     |
| 3    | For an isolate                                                                                                                                                                                                                                                                                                                                                                     | ed system               | $\Delta U$ =0, then $\Delta$         | S will be positive.             |                   |                | 1     |
| 4    | Valance elec                                                                                                                                                                                                                                                                                                                                                                       | trons pres              | ent in the oute                      | ermost shell take               | part in the bond  | formation.     | 1     |
| 5    |                                                                                                                                                                                                                                                                                                                                                                                    |                         | ricant because<br>slide over ea      | e in graphite carb<br>ch other. | on is sp2 state f | forming        | 1     |
| 6    | Out of O <sub>2</sub> NC                                                                                                                                                                                                                                                                                                                                                           | H₂CH₂O⁻a                | nd CH <sub>2</sub> CH <sub>2</sub> C | )H⁻ O₂NCH₂C⊦                    | H₂O⁻is more stal  | ble.           | 1     |
| 7    | Unbinilium.                                                                                                                                                                                                                                                                                                                                                                        |                         |                                      |                                 |                   |                | 1     |
| 8    | (p+a/v <sup>2</sup> )(v-b):                                                                                                                                                                                                                                                                                                                                                        | =RT                     |                                      |                                 |                   |                | 1     |
| 9    | Molar mass of NaNO <sub>3</sub> = 23+14+48= 85g/mol<br>V=50ml<br>M=0.83/(85 x 50)<br>=0.089M of NaNO <sub>3</sub>                                                                                                                                                                                                                                                                  |                         |                                      |                                 |                   |                |       |
|      |                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                      | OR                              |                   |                |       |
|      | Element                                                                                                                                                                                                                                                                                                                                                                            | %                       | Atomic mass                          | Relative no of atoms            | Simplest ratio    | Whole no ratio | 1     |
| l    | Iron                                                                                                                                                                                                                                                                                                                                                                               | 69.9                    | 56                                   | 69.9/56=1.25                    | 1.25/1.25=1       | 2              | 1     |
|      | dioxygen                                                                                                                                                                                                                                                                                                                                                                           | 30.0                    | 16                                   | 30.1/16=1.89                    | 1.89/1.25=1.5     | 3              |       |
|      | Empirical formula= Fe <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                  |                         |                                      |                                 |                   |                |       |
| 10   | The smallest packet of energy of any radiations is called a quantum whereas that of light is called photon.                                                                                                                                                                                                                                                                        |                         |                                      |                                 |                   |                | 1+1   |
| 11   | i) Be has higher $\Delta_i H$ than B because of stable configuration.<br>ii)O has lower $\Delta_i H$ than N and F because of stable configuration of $2px^1 2py^1 2pz^1$                                                                                                                                                                                                           |                         |                                      |                                 |                   |                |       |

|        | because of effective nuclear                                                                                                                                                                                                                                                                            | r charge on F.      |                            |     |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|-----|--|
| 12     | N <sub>2</sub> <clf<sub>3<so<sub>2<k<sub>2O<lif<sub>3</lif<sub></k<sub></so<sub></clf<sub>                                                                                                                                                                                                              |                     |                            | 2   |  |
| 13     | For the reaction $\Delta G = \Delta H - T \Delta G$                                                                                                                                                                                                                                                     | _                   |                            |     |  |
|        | $\Delta G$ =-10.5{-298x(-44.1x10 <sup>-3</sup> )}<br>=138614.7 X10 <sup>-3</sup>                                                                                                                                                                                                                        | )}                  |                            | 1   |  |
|        | =138.6147and                                                                                                                                                                                                                                                                                            |                     |                            | 1   |  |
| 14     | A pair of acid and base which differ from one another by a proton are said to be a conjugate acid base pair.  HNO₂→NO₂  CN⁻→HCN                                                                                                                                                                         |                     |                            |     |  |
| 15     | According to de- Broglie rela                                                                                                                                                                                                                                                                           |                     |                            | 1   |  |
|        | The mass of car is very larg negligible. So we do not see                                                                                                                                                                                                                                               |                     |                            | 1   |  |
| 16     | Second electron is to be add energy to overcome the rep                                                                                                                                                                                                                                                 |                     | , which will require extra | 2   |  |
| 17     | i) Number of electrons 16.<br>ii) Number of electrons 2.                                                                                                                                                                                                                                                |                     |                            | 1   |  |
|        |                                                                                                                                                                                                                                                                                                         |                     |                            |     |  |
| 18     | Weight of sulphur in BaSO <sub>4</sub> :<br>Percentage of sulphur=(32/2                                                                                                                                                                                                                                 |                     |                            | 2   |  |
| 19     | In NH <sub>3</sub> , there is only one lone pair on N-atom to repel the bond pairs whereas in H <sub>2</sub> O, there are two lone pairs on O-atom to repel the bond pairs. Hence, the repulsion on bond pairs inH <sub>2</sub> O are greater than in NH <sub>3</sub> and hence the bond angle is less. |                     |                            |     |  |
| 20.(i) | Given:                                                                                                                                                                                                                                                                                                  | T 070C              | D. Ohar                    | 1   |  |
| 20.(1) | $d_1 = 5.46 \text{ g/dm}^3$ at STP,                                                                                                                                                                                                                                                                     | T₁=27°C             | P <sub>1</sub> =2 bar      | 1 1 |  |
|        | d <sub>2</sub> =?                                                                                                                                                                                                                                                                                       | T <sub>2</sub> =0°C | P <sub>2</sub> =1bar       | '   |  |
|        | $d_1/d_2=P_1T_2/T_1P_2$                                                                                                                                                                                                                                                                                 |                     |                            |     |  |
|        | $5.46/d_2 = 2x273 / 300x1$<br>Or $d_2 = 3 \text{ gdm}^{-3}$                                                                                                                                                                                                                                             |                     |                            |     |  |
| (ii)   | Higher the critical temperature more easily the gas can be liquefied, i.e, greater are the intermolecular forces of attraction. Hence, $CO_2$ has stronger intermolecular forces then $CH_4$ .                                                                                                          |                     |                            |     |  |
| 21.    | (i) $CCl_4(I) \rightarrow CCl_4(g)$ , $\Delta H=30.5 \text{ kJ/mol}$                                                                                                                                                                                                                                    |                     |                            |     |  |
|        |                                                                                                                                                                                                                                                                                                         |                     |                            |     |  |
|        |                                                                                                                                                                                                                                                                                                         |                     |                            |     |  |
|        |                                                                                                                                                                                                                                                                                                         |                     |                            | 1   |  |

|             |      | (ii) C(s) + 2 Cl <sub>2</sub> (g) $\rightarrow$ CCl <sub>4</sub> (I), $\Delta$ H=-135.5 kJ/mol                                |     |
|-------------|------|-------------------------------------------------------------------------------------------------------------------------------|-----|
|             |      | (iii)C(s) $\rightarrow$ C(g), $\Delta$ H=715.0 kJ/mol<br>(iv) Cl <sub>2</sub> (g) $\rightarrow$ 2Cl(g), $\Delta$ H=242 kJ/mol |     |
|             |      | (IV) OI <sub>2</sub> (g) 720I(g), AI I=242 K0/IIIOI                                                                           |     |
|             |      | Aim: CCL (a)                                                                                                                  |     |
|             |      | Aim: $CCl_4(g) \rightarrow C(g) + 4Cl(g)$ , $\Delta H=?$                                                                      |     |
|             |      |                                                                                                                               |     |
| 22.         |      | Eqn.(iii)+2 x Eqn. (iv) – Eqn. (i) – Eqn. (ii) gives the required equation with                                               | 1   |
|             |      | ΔH=715.0 + 2(242) – 39.5 -(-135.5) kJ/mol                                                                                     |     |
|             |      | =1304 kJ/mol<br>Bond enthalpy of C−Cl in CCl₄ (avg. value)=1304/4=326kJ/mol.                                                  | 1   |
|             |      |                                                                                                                               |     |
| 23.(i)      |      | $Q_c$ for the given reaction is:                                                                                              | 1   |
|             |      | $Q_c = [NH_3]^2 / ([N_2] [H_2]^3) = (8.13/20) / (1.57/20)(1.92/20)$<br>= 2.38 x 10 <sup>3</sup>                               |     |
|             |      | As $Q_c \neq K_c$ , the reaction mixture is not in equilibrium.                                                               | 1   |
|             |      | As $Q_c > K_c$ , the net reaction will be in backward direction.                                                              | 1   |
| (ii)        | a.   | NaH <sub>2</sub> PO <sub>4</sub>                                                                                              |     |
|             | b.   | =1(+1) + 2(+1) + 1(x) + 4(-2) = 0                                                                                             | 1   |
|             |      | Or x=+5<br>Thus oxidation number of P in NaH <sub>2</sub> PO <sub>4</sub> = +5.                                               |     |
|             |      |                                                                                                                               |     |
|             |      | To complete the electric circuit without mixing the two solution of two half cells.                                           | 1   |
|             |      | Avoids the accumulation of electric charges in two half cells                                                                 | 1   |
|             |      |                                                                                                                               | '   |
|             |      | OR                                                                                                                            | 1   |
| 24 (i)      | (a)  | $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ ]x2                                                                       |     |
| 2 1.(1)     | (α)  |                                                                                                                               |     |
|             | (b)  | $2MnO_4^- + 5H_2S + 6H^+ \rightarrow 2Mn^{2+} + 5S + 8H_2O$                                                                   | 1   |
|             | (ii) |                                                                                                                               | 1   |
|             | ( )  | 3-Bromo-3-Chloroheptane                                                                                                       |     |
|             |      | 3 Brome 3 Grilloroneptane                                                                                                     | 1   |
|             |      | Cyclohexanecarbaldehyde                                                                                                       |     |
|             |      | OH                                                                                                                            | 1   |
| 25.         |      |                                                                                                                               | 1   |
| i)          |      |                                                                                                                               | 1   |
| ii)<br>iii) |      |                                                                                                                               |     |
| ,           |      |                                                                                                                               | 1   |
| 26          |      | TiH <sub>2</sub> < CaH < BeH <sub>2</sub>                                                                                     |     |
| 26.         |      | F-F <d-d<h-h< td=""><td></td></d-d<h-h<>                                                                                      |     |
|             |      | H <sub>2</sub> O <mgh<sub>2<nah< td=""><td></td></nah<></mgh<sub>                                                             |     |
|             |      |                                                                                                                               | 1 1 |
|             |      | CO binds to haemoglobin for which it has 200 times more affinity than                                                         | 1   |

| 27. (i)       | oxygen and forms carboxyhaemoglobin. In blood when the concentration of carboxyhaemoglobin reaches 3-4%, the oxygen caring capacity of blood is greatly reduced which causes further many diseases. On the other hand CO <sub>2</sub> does not combine with blood. Hence less harmful as pollutant.                                                                   | 1+2 |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (ii)          | CH <sub>3</sub> -CH=CH <sub>2</sub> ← CH <sub>3</sub> -CH-CH=CH <sub>2</sub> But-2-en-1-ylcarbocation                                                                                                                                                                                                                                                                 |     |
| 28.(i) a)     | Chromatography is the process for isolation, purification and separation of organic compounds.                                                                                                                                                                                                                                                                        | 2   |
| b)            | Na <sub>2</sub> CO <sub>3</sub> is a salt of weak acid and strong base. Therefore it undergoes hydrolysis to produce strong base NaOH and hence its aqueous solution is alkaline in nature.                                                                                                                                                                           | 1   |
| (ii)          | The size of O <sup>2-</sup> ion is much smaller than that of the SO <sub>4</sub> <sup>2-</sup> ion. Since a bigger cation stabilizes a bigger cation more than a smaller anion stabilizes a bigger cation. Therefore the lattice energy of BaO is much Smaller than that of BaSo <sub>4</sub> and Hence BaO is soluble while BaSo <sub>4</sub> is insoluble in water. | 1   |
| (iii)         | BeCl <sub>2</sub> (vapour) It exists as chlorobridged dimer.  CI—Be—CI CI—Be—CI                                                                                                                                                                                                                                                                                       | 1   |
|               | a) $4KO_2 + 2H_2O \rightarrow 4KOH + 3O_2$<br>b) $2Na(s) + 2H_2O \rightarrow 2NaOH + H_2$                                                                                                                                                                                                                                                                             |     |
|               | OR                                                                                                                                                                                                                                                                                                                                                                    | 1   |
|               | <ul> <li>i)</li> <li>a) Oxygen gas is evolved when sodium peroxide is dissolved in water.</li> <li>2Na<sub>2</sub>O<sub>2</sub> + 2H<sub>2</sub>O→ 4NaOH +O<sub>2</sub></li> </ul>                                                                                                                                                                                    | •   |
|               | b) $CuSO_4.2H_2O \rightarrow CaSO_4. \frac{1}{2}H_2O(s)$ $\downarrow (437K)$                                                                                                                                                                                                                                                                                          | 1   |
|               | CaSO4{dead burnt plastic}  ii)  a) Lithium salts are commonly hydrated because of the smallest size of lithium ion and maximum hydration enthalpy.                                                                                                                                                                                                                    | 2   |
| 29.(i)<br>(a) | iii) The self ionization of water is called autoprotolysis of water.  H <sub>2</sub> O+ H <sub>2</sub> O= H <sub>3</sub> O <sup>+</sup> +OH <sup>-</sup> It shows that it is amphoteric in nature and also shows that its ph is 7.                                                                                                                                    | 1   |
|               | Al reacts with H₂O to form a very thin layer of aluminium oxide on its surface                                                                                                                                                                                                                                                                                        | 1   |

| which protects it from further action.                                                                                                                                                                                                                                                                                                                                                                                               | 1              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2AI(s) + 6HNO <sub>3</sub> (conc.) $\rightarrow$ AI <sub>2</sub> O <sub>3</sub> (s) + 6NO <sub>2</sub> (g) + 3H <sub>2</sub> O(l) Alumina                                                                                                                                                                                                                                                                                            |                |
| (b) Thus Al becomes passive and hence Al containers can be used to tr conc.HNO <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                        | ransport 1     |
| Due to poor shielding of the valance electrons of the Ga by inner 3d- electron, the effective nuclear charge of Ga is greater in magnitude t of Al. as a result, the electrons in gallium experience greater force o attraction by the nucleus than Al and hence atomic size of Ga(135pn slightly less than that of Al(143pm).                                                                                                       | han that<br>of |
| When diborane is heated in excess of ammonia it forms a compound inorganic benzene (borazine).                                                                                                                                                                                                                                                                                                                                       |                |
| $3B_2H_6 + 6NH_3 \rightarrow 3[BH_2(NH_3)_2] + [BH_4]^- \rightarrow 2B_3N_3H_6 + 12H_2$<br>Borazine                                                                                                                                                                                                                                                                                                                                  | 2              |
| H H H H                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| In the elements of 4 <sup>th</sup> , 5 <sup>th</sup> and 6 <sup>th</sup> period of the p-block elements which d-block elements, the electrons presents in the intervening d- and f-condo not shield the s-electrons of the valence shell effectively. As a reselectrons remain more tightly held by the nucleus and hence do not participate in binding. This is called inert pair effect.  OR                                       | orbitals       |
| <ul> <li>i)</li> <li>a) Graphite.</li> <li>b) Lead is known not to form PbI<sub>4</sub> due to inert pair effect.</li> <li>c) BF3 has shorter bond length because it is sp2 hybridised and BF<sub>4</sub> longer bond length due to sp3 hybridisation.</li> <li>ii)</li> <li>a) When powdered Borax is heated strongly in the Bunsen flame a transparent, colourless glassy bead made of Na meta borate and bo anhydride.</li> </ul> | 1              |
| b) Zno is reduced to Zn by CO which is a strong reducing agent. ZnO+ CO→ Zn+ CO <sub>2</sub> .                                                                                                                                                                                                                                                                                                                                       | 1              |
| i)HI>HBr>HCI>HF                                                                                                                                                                                                                                                                                                                                                                                                                      | 1              |

| ii) By catalytic reduction with H <sub>2</sub> in the pres                                                                                     | ence of nickel at 523-573K.                                                                                     |   |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---|
| iii) Heat of hydrogenation is the amount of hunsaturated compound is hydrogenated (in                                                          |                                                                                                                 |   |
| iv) Wurtz reaction is not preferred for the pr                                                                                                 | eparation of alkanes containing                                                                                 |   |
| odd no of carbons atoms because whenever atoms reaction will give mixture of products For example:                                             |                                                                                                                 |   |
| CH <sub>3</sub> -Br + CH <sub>3</sub> -CH <sub>2</sub> -Br +2Na→CH <sub>3</sub> CH <sub>3</sub> + CH<br>+2NaBr                                 | <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> +CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> 2 | 2 |
| OR                                                                                                                                             |                                                                                                                 |   |
| i) As branching increases, the surfated that of a sphere. Since a sphere therefore, Vander walls forces of hence the boiling point of the alke | has minimum surface area, attraction are minimum and                                                            |   |
| ii) When an alkene is treated with one is obtained which when heated waldehydes and ketones depending Reaction is called ozonolysis.           | ith Zn dust and water gives                                                                                     |   |
| iii) The thermal decomposition of high<br>hydrocarbons in presence or abs<br>cracking.                                                         | •                                                                                                               |   |
| iv) Due to resonance.                                                                                                                          | 1                                                                                                               | I |
| The NO <sub>2</sub> groups strongly deactivates the be electrophile.                                                                           | enzene ring for the attack of an                                                                                |   |
| electroprilie.                                                                                                                                 | 1                                                                                                               | l |
|                                                                                                                                                | 1                                                                                                               |   |
|                                                                                                                                                |                                                                                                                 |   |
|                                                                                                                                                |                                                                                                                 |   |
|                                                                                                                                                |                                                                                                                 |   |
|                                                                                                                                                |                                                                                                                 |   |
|                                                                                                                                                |                                                                                                                 |   |