Maths Class 10 Notes for Quadratic Equations

QUADRATIC EQUATIONS

The polynomial of degree two is called quadratic polynomial and equation corresponding to a quadratic polynomial \(P(x) \) is called a quadratic equation in variable \(x \).

Thus, \(P(x) = ax^2 + bx + c = 0, a \neq 0, a, b, c \in \mathbb{R} \) is known as the standard form of quadratic equation.

There are two types of quadratic equation.
(i) **Complete quadratic equation**: The equation \(ax^2 + bx + c = 0 \) where \(a \neq 0, b \neq 0, c \neq 0 \)
(ii) **Pure quadratic equation**: An equation in the form of \(ax^2 = 0, a \neq 0, b = 0, c = 0 \)

ZERO OF A QUADRATIC POLYNOMIAL

The value of \(x \) for which the polynomial becomes zero is called zero of a polynomial

For instance,

1 is zero of the polynomial \(x^2 — 2x + 1 \) because it become zero at \(x = 1 \).

SOLUTION OF A QUADRATIC EQUATION BY FACTORISATION

A real number \(x \) is called a root of the quadratic equation \(ax^2 + bx + c = 0, a \neq 0 \) if \(a\alpha^2 + b\alpha + c = 0 \). In this case, we say \(x = \alpha \) is a solution of the quadratic equation.

NOTE:

1. The zeroes of the quadratic polynomial \(ax^2 + bx + c \) and the roots of the quadratic equation \(ax^2 + bx + c = 0 \) are the same.
2. Roots of quadratic equation \(ax^2 + bx + c = 0 \) can be found by factorizing it into two linear factors and equating each factor to zero.

SOLUTION OF A QUADRATIC EQUATION BY COMPLETING THE SQUARE

By adding and subtracting a suitable constant, we club the \(x^2 \) and \(x \) terms in the quadratic equation so that they become complete square, and solve for \(x \).

In fact, we can convert any quadratic equation to the form \((x + a)^2 — b^2 = 0 \) and then we can easily find its roots.

DISCRIMINANT

www.ncerthelp.com (Visit for all ncert solutions in text and videos, CBSE syllabus, note and many more)
The expression $b^2 - 4ac$ is called the discriminant of the quadratic equation.

SOLUTION OF A QUADRATIC EQUATION BY DISCRIMINANT METHOD

Let quadratic equation is $ax^2 + bx + c = 0$

Step 1. Find $D = b^2 - 4ac$.

Step 2.

(i) If $D > 0$, roots are given by

$$x = \frac{-b + \sqrt{D}}{2a}, \frac{-b - \sqrt{D}}{2a}$$

(ii) If $D = 0$ equation has equal roots and root is given by $x = -\frac{b}{2a}$.

(iii) If $D < 0$, equation has no real roots.

ROOTS OF THE QUADRATIC EQUATION

Let the quadratic equation be $ax^2 + bx + c = 0$ ($a \neq 0$).

Thus, if $b^2 - 4ac \geq 0$, then the roots of the quadratic

$$-b \pm \sqrt{b^2 - 4ac}$$

/ $2a$ equation are given by

QUADRATIC FORMULA

$$-b \pm \sqrt{b^2 - 4ac} / 2a$$

is known as the quadratic formula

which is useful for finding the roots of a quadratic equation.

NATURE OF ROOTS

(i) If $b^2 - 4ac > 0$, then the roots are **real and distinct**.

(ii) If $b^2 - 4ac = 0$, the roots are **real and equal or coincident**.

(iii) If $b^2 - 4ac < 0$, the roots are not **real (imaginary roots)**

FORMATION OF QUADRATIC EQUATION WHEN TWO ROOTS ARE GIVEN

If α and β are two roots of equation then the required quadratic equation can be formed as $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

NOTE :

www.ncerthelp.com (Visit for all ncert solutions in text and videos, CBSE syllabus, note and many more)
Let \(\alpha \) and \(\beta \) be two roots of the quadratic equation \(ax^2 + bx + c = 0 \) then

Sum of Roots: \(- the coefficient of \(x \) / the coefficient \(t \) of \(x^2 \) \(\Rightarrow \alpha + \beta = -\frac{b}{a} \)

Product of Roots:
\(\alpha\beta = \text{constant term} / \text{the coefficient } t \text{ of } x^2 \Rightarrow \alpha\beta = \frac{c}{a} \)

METHOD OF SOLVING WORD PROBLEMS

Step 1: Translating the word problem into Mathematics form (symbolic form) according to the given condition

Step 2: Form the word problem into Quadratic equations and solve them.